
 

Machine-learning analysis of X-ray data
picks out key catalytic properties

October 23 2019, by Karen McNulty Walsh
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This schematic shows how spectra derived from theory calculations using known
structures (top) can be used to train a neural network (center), which can then
use its assembled "knowledge" to translate spectra measured in operando
experiments into the corresponding structures (bottom). Credit: Brookhaven
National Laboratory

Scientists seeking to design new catalysts to convert carbon dioxide
(CO2) to methane have used a novel artificial intelligence (AI) approach
to identify key catalytic properties. By using this method to track the
size, structure, and chemistry of catalytic particles under real reaction
conditions, the scientists can identify which properties correspond to the
best catalytic performance, and then use that information to guide the
design of more efficient catalysts.

"Improving our ability to convert CO2 to methane would 'kill two birds
with one stone' by making a sustainable non-fossil-fuel energy source
that can be easily stored and transported while reducing carbon
emissions," said Anatoly Frenkel, a chemist with a joint appointment at
the U.S. Department of Energy's Brookhaven National Laboratory and
Stony Brook University.

Frenkel's group has been developing a machine-learning approach to
extract catalytic properties from X-ray signatures of catalysts collected
as chemicals are transformed in reactions. The current analysis is
described in a paper just published in the Journal of Chemical Physics,
based on X-ray data collected at DOE's Argonne National Laboratory.

The team of Argonne senior chemist Stefan Vajda, now at the J.
Heyrovský Institute of Physical Chemistry in Prague, prepared size-
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selective clusters of copper atoms. Then they used mass spectrometry
and x-rays at Argonne's Advanced Photon Source (APS) to study how
various size clusters performed in the reaction and how their oxidation
state evolved during the reaction of carbon dioxide with hydrogen.

Copper has shown promise as a catalyst that can lower the temperature
of the CO2-to-methane reaction. Size-selective copper clusters may also
help drive the reaction efficiently to the desired outcome—selectively
producing just methane and water vapor—without channeling reactants
down a variety of pathways toward other products.

"There are, broadly speaking, two major challenges towards
implementing this idea," said Frenkel. "First is the lack of knowledge of
the structure of the prepared clusters; the smaller they are, the more
variations there may be in shapes and structures—even when the number
of atoms in each cluster is the same.

"Second, even if we start the reaction with clusters of a certain size and
shape, they may transform beyond recognition during the reaction to
various forms of oxides."

Some of the oxides might enhance reactivity; others might impede the
reaction. To understand how the catalyst works, the scientists need to
know what types of oxides form during the reaction—and how they
affect catalytic performance.
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Research team members: Stony Brook University (SBU) graduate student
Nicholas Marcella, Brookhaven Lab chemist Ping Liu, SBU graduate student
Yang Liu, and SBU-Brookhaven Lab joint appointee Anatoly Frenkel. Credit:
Brookhaven National Laboratory

Collecting spectral data

X-ray data collected while analyzing catalysts at the APS or other
synchrotron light sources (including the National Synchrotron Light
Source II at Brookhaven Lab) contains a wealth of information about
chemical composition and structure because these properties determine
how x-rays interact with the sample. But extracting that information
from data collected from ultra-dilute samples made up of tiny clusters
(containing as few as four atoms per cluster) presents a big challenge.
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"These samples are too small for X-ray scattering or imaging methods
commonly used to characterize materials on the nanoscale," Frenkel
said.

Instead, the scientists analyzed how individual copper atoms absorb the
synchrotron x-rays.

The amount of X-ray energy absorbed tells them how much energy it
takes to "kick" an electron out of orbit from each copper atom, which
depends on its oxidation state—how many electrons the atom has
available to share in forming chemical bonds. The less oxidized the
copper atom is (meaning it's holding on to its electrons), the less energy
it takes for the x-rays to kick an electron out—because the electrons left
behind help shield the escaping electron from the attractive positive
charge of the copper nucleus. The more oxidized (with fewer electrons),
the more energy it takes to kick a remaining electron out—because the
positive pull of the unshielded nucleus is harder to overcome.

The X-ray absorption spectrum therefore contains information about the
oxidation state and other details that reveal features of the atomic
structure, including how many adjacent atoms each copper atom is
bound to. But to extract this information the scientists needed a way to
relate the measured spectra to known structural arrays of copper atoms
with various oxidation states.

That's where the artificial intelligence comes in. The scientists developed
an artificial neural network "trained" to recognize key features in spectra
from known structures so it could then find the unknown structures just
by analyzing the measured spectra.

Training the network

Developing a library of known structures that they could use to train the
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network presented its own challenges. For help, Frenkel's group turned
to Ping Liu in Brookhaven's Chemistry Division.

"The structure of the clusters depends very strongly on how the particles
interact with the support substrate they are deposited on and the reactive
environment," said Liu, a theorist with vast experience modeling
catalytic activity. "We have constructed model systems for the supported
metal and metal oxide clusters, complex enough to capture the structures
and catalytic behaviors during the reactions as observed experimentally,"
she said. "These operating models provide a strong basis enabling the
accuracy and efficiency of the machine learning."

Then the team used numerical methods to generate the spectra these
samples would produce—a fairly straightforward approach—and used
these theoretically generated spectra to train the neural network.

Once the computer running the neural network program had learned the
relationships between the spectral features and the key characteristics of
the known clusters—the oxidation states, number of neighbor atoms, and
so on—the scientists could feed the spectra measured from their
experimental clusters into the network and it would tell them the cluster
characteristics for those samples.

Characteristics of the clusters

In the copper catalyst experiment, the scientists used this approach to
analyze X-ray absorption spectra from clusters made up of four, twelve,
or twenty copper atoms.

"During the reaction, these clusters go through many different oxidation
states depending on the stage of the reaction. We collected the spectra at
these different stages and used our machine learning approach to
identify the different oxidation states of the clusters at different stages
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of the reaction. We also correlated the oxidation states with the observed
catalytic activity to determine which structures are the best catalysts,"
Frenkel said.

Data from other experimental methods already existed for the two
smaller cluster sizes, so it could serve as a cross-check of the new
technique. "This comparison showed that we were able to recognize the
oxidation states corresponding to metallic copper or the different types
of metal oxide using our neural network approach," Frenkel said.

This was the first time Frenkel had applied his machine learning
approach to solving anything other than pure metallic clusters.

"It's the first time we were able to train the network to recognize
different types of oxides," he said.

It is also the first time Frenkel's method has been used in a predictive
capacity—to determine the oxidation states and other characteristics of
the 20-copper-atom clusters, for which no other data exist.

It turns out that the most catalytically active state of the copper catalyst
is a mixture of metallic clusters (where copper is bound only to other
copper atoms) and two different copper-oxides (CuO and Cu2O).

"There are many reactions where the catalyst turns out to be most active
when it is neither fully oxidized nor fully reduced," Frenkel said. "Those
clusters that are able to form this mixture of the three different states in
the right proportions will be the most active."

Frenkel's group is continuing their analysis to learn more about the
catalytic mechanism and will publish their results in the future.

  More information: Yang Liu et al, Mapping XANES spectra on
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