
 

Unfolding adsorption on metal nanoparticles:
Connecting stability with catalysis
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Illustration of the initial configurations for several DFT (density functional
theory) calculations performed. Upper: Coordination numbers on (A) 55-atom
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icosahedron, (B) 55-atom cuboctahedron, (C) 147-atom icosahedron, (D)
147-atom cuboctahedron, (E) 172-atom cube. Nanoparticles (NPs) where more
than one unique atom share the same coordination number (CN), are denoted
with numbers 8-1, 8-2, 8-3, 8-4. Credit: Science Advances, doi:
10.1126/sciadv.aax5101

Metal nanoparticles have received substantial attention due to their
applications in diverse fields from medicine, catalysis, energy and the
environment. However, the fundamental properties of nanoparticle
adsorption on a surface remain to be understood. James Dean and an
interdisciplinary research team in the department of Chemical
Engineering, in the U.S. introduced a universal adsorption model to
account for the structural characteristics, metal composition and
different adsorbates of nanoparticles via machine learning (ML). The
model fit a large number of data to accurately predict adsorption trends
on monometallic and alloy-based nanoparticles. The template was simple
and provided rapidly calculated data for metals and adsorbates. The
research team connected the adsorption with stability behavior to
advance the design of optimal nanoparticles for applications of interest.
The research is now published on Science Advances.

Metal nanoparticles (NPs) have significant applications in catalysis,
ranging from fuel and chemical production, to solar and chemical energy
. But their stability and catalytic activity generally show opposing trends,
where very active catalysts can only operate for a few cycles. A key
feature on the extent of metallic catalytic functionality depends on the
strength of adsorption for a variety of species on the catalyst surface.
According to the Sabatier principle, developed more than a century ago,
active catalysts should bind adsorbates with a binding strength that is
neither strong nor weak. While strongly adsorbed species can poison the
catalyst surface, weakly bound reactants desorb easily. In an
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intermediate scenario, the reactants can meet each other and react on the
catalytic surfaces. Researchers currently use computational simulation
and theoretical chemistry methods to stimulate catalytic behavior on
metal catalysts with great accuracy to guide subsequent experiments in
the lab.

Computational efforts have focused on screening different metal
catalysts to discover the "magic" binding energy (BE) of chemical
species on catalyst surfaces to form very active catalysts. The in silico
design of catalytically active materials, however, remains to be realized.
The drawbacks are mainly due to design efforts that often neglect the
stability of catalysts. NP catalysts also possess a high degree of site
heterogeneity on their surface for adsorption and catalysis. Scientists had
developed adsorption models to relate binding energy of the adsorbates
with surface characteristics of NPs such as coordination numbers (CNs)
to understand the site-specific adsorption response. Yet, for clarity, the
binding energy (BE) variation also entails secondary descriptors such as 
curvature and electronic properties of NPs.

  
 

  

Demonstration of local cohesive energy (CElocal) as a descriptor for adsorption
energy. (A) The BE of CO on various sites of Au NPs as a function of CElocal:
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172-atom cube (rectangles), 147-atom icosahedron (hexagons), and 147-atom
cuboctahedron (rhombus). Heat map of different sites on the NPs with respect to
their BE of CO (B to D) and to their CElocal (E to G). The color scheme follows
the range of strongest CO binding to weakest CElocal (violet) and of weakest
binding to strongest CElocal (red). Credit: Science Advances, doi:
10.1126/sciadv.aax5101

In the present work, Dean et al. applied density functional theory (DFT)
and machine learning techniques to derive a simple physics-based model
to accurately capture the varying adsorption energy. They estimated the
variable as a function of the local adsorption site environment on the NP
surface as well as the type of metal NP. The generalized model could be
applied to any metal nanostructure to understand adsorption behavior on
the NP catalyst and the stability of the catalyst; to screen and design
catalysts for numerous applications.

The researchers first hypothesized the most important factors between
monometallic NPs and adsorbates. They then defined the local cohesive
energy (CElocal) in bulk metals and captured CEs in NPs using a bond-
centric model, which summed every metal-metal bond energy. By
applying similar concepts, they described the stability of binding sites
and showed how chemically unsaturated sites (fewer metal-metal bonds)
bound adsorbates with an increased strength. The research team focused
on describing the binding capacity of a single adsorbate-metal pair. They
plotted the DFT-calculated binding energy of carbon monoxide (CO) to
a 172-atom gold (Au) cube and a 147-atom gold (Au) cuboctahedron or
icosahedron. The team observed a strongly inverse relationship between
the local cohesive energy (CElocal) and binding energy (BE) to suggest the
strongest adsorption sites to be those exhibiting the weakest local
cohesion.
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The team further developed their model and performed ordinary least
squares (OLS) regression to understand adsorption on monometallic NPs
and slabs using three adsorbates [Methyl radical (CH3), CO, hydroxyl
radical (OH)] on three different metals (Cu, Ag—silver, Au). The
metallic NPs contained different morphologies (172-atom cube, 55- and
147-atom icosahedron and 55- and 147-atom cuboctahedron). They
observed that the binding affinity to the adsorbates decreased as the
cohesion of the local sites increased. And as the adsorbate's chemical
potential increased, they became less stable and bound a metal NP with
higher tendency. The direct correlation with the metal Adsorbate (MAD)
intuitively described the tendency of the metal to bind the adsorbate.

  
 

  

Parity plot of the model-predicted binding energy (BE) of adsorbates (OH, CO,
and CH3) on various metal systems versus the DFT BE (eV). (A) The model

5/10

https://www.sciencedirect.com/topics/mathematics/ols
https://www.sciencedirect.com/topics/mathematics/ols


 

both trained and tested on PBE DFT data for NPs (Au/Ag/Cu, 55 to 172 atoms),
which includes the nanoparticle cohesive energy (CENP) term. (B) The model
both trained and tested on PBE DFT data for NPs (Au/Ag/Cu, 55 to 172 atoms),
which does not include the CENP term. (C) The model trained on PBE DFT data
for NPs (Au/Ag/Cu, 55 to 172 atoms) and tested against RPBE (revised Perdew-
Burke-Ernzerhof model) DFT data for top-site adsorptions on metal surfaces
(Au/Ag/Cu). (D) The model both trained and tested on RPBE DFT data for top-
site adsorptions on metal surfaces (Au/Ag/Cu) from the slab dataset. Credit:
Science Advances, doi: 10.1126/sciadv.aax5101

Dean et al. tested the generalizability of the model and trained the
simulation on a single metal or single morphology, although it accurately
captured other metals or morphologies as well. The work provided
strong evidence that the model captured the underlying physics of the
binding interactions, allowing the team to extend the work from non-
periodic NPs to periodic slab systems. Computationally inexpensive
systems could parameterize the model to extend to larger systems, which
was not thus far possible due to the computational costs involved.

Dean et al. then extended the model from monometallic NPs to
bimetallic systems. For these experiments, they plotted the BE—trained
on monometallic NPs, across several sites of bi-metallic, 55-atom
icosahedron NPs (Cu31Ag24 and Cu22Ag33). The model very accurately
captured trends in adsorption on the bimetallic Cu/Ag NPs as well. This
was an interesting result since the scientists had only trained the model
on monometallic systems. The results showed the generalizability of the
model for both monometallic and bimetallic NPs. However, the team
will account additional descriptors including binding site
electronegativity to understand the adsorption behavior for bimetallic
systems in depth.
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Parity plot between the presently developed model and DFT calculations on
icosahedral bimetallic (Cu55−xAgx, x = 24, 33) NPs. The model is trained on
CH3, CO, and OH adsorbing on monometallic Ag, Cu, and Au NPs and is able
to capture adsorption on bimetallic NPs. Images of the two NPs are shown as
inset, with copper and silver atoms colored in brown and gray, respectively.
Credit: Science Advances, doi: 10.1126/sciadv.aax5101

Although Dean et al. trained the ML (machine learning) algorithm to
capture the adsorption trends of just one type of d9 metal, it could
accurately predict the behavior of similar d9 metals (Cu—coper, Ag and
Au). When they trained the model on a dataset of CH3, CO and OH
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adsorbed to Cu, Ag and Au NPs, they could also capture general
adsorption trends for similar elements in other columns of the periodic
table. They then improved the complexity of the machine learning
techniques to provide additional avenues to improve the model of
adsorption.

In this way, James Dean and his colleagues developed a simple yet
powerful physics-based model to capture trends on the strength of
binding interactions between different adsorbates and metal NPs using 
machine learning techniques. The study was the first to develop an
adsorption model that accurately connected the properties of diverse 
metal NPs with the stability of the adsorption site. The model introduced
simple descriptors to capture the adsorption on any site, relative to
monometallic and bimetallic NPs. The team generalized the model to
effectively stimulate a range of binding interactions, including variations
on the types of metals, their composition, sites of adsorption and
adsorbates.

  
 

8/10

https://phys.org/tags/machine+learning/
https://phys.org/tags/metal/


 

  

LEFT: The three-descriptor model extended to slab dataset. (A) The model
trained on the slab dataset on Cu, Ag, and Au surfaces and tested against the Rh,
Ir, Ni, Pd, Pt, Cu, Ag, and Au surfaces from the slab dataset. (B) The equivalent
model when trained separately for each column of the d-block, still using the
slab dataset. Error bars in every case are the 10-fold cross-validated RMSE of
the training set. RIGHT: Extension of the model to Rh and NH3. (A) The model
parameterized on our Ag, Cu, and Au NPs adsorbing CH3, CO, and OH and
tested against Rh and NH3. (B) The equivalent model with empirical (constant)
corrections for Rh and NH3. In the case of NH3 bound to Rh, both corrections
are simultaneously applied and indicated by two-colored dots. (C) The model
trained on CH3, CO, OH, and NH3 adsorbing on icosahedral/cuboctahedral
Rh55. Credit: Science Advances, doi: 10.1126/sciadv.aax5101

Although the team did not test the applicability of the model for ternary

9/10



 

systems, the physical properties may remain relevant to accurately model
multimetallic systems as well. The adsorption model can accurately
describe the binding strength of a variety of molecules on any site of
NPs, including alloys. The scientists expect the model to be highly
applicable as a screening tool for the high throughput search of potential
catalysts.

  More information: James Dean et al. Unfolding adsorption on metal
nanoparticles: Connecting stability with catalysis, Science Advances
(2019). DOI: 10.1126/sciadv.aax5101 
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