A new mechanism linked to premature aging in mother cells

Credit: CC0 Public Domain

Researchers from the University of Seville and the Andalusian center of Molecular Biology and Regenerative Medicine (CABIMER), have discovered a new mechanism that makes it possible to understand premature aging in cells with asymmetrical cell division, as is the case with mother cells. Understanding this mechanism could be useful for studying and anticipating the development of aging-related diseases such as cancer and neurodegenerative processes. The research was published in Nature Cell Biology.

During asymmetrical division, the resulting acquire a different morphology and size, different cellular contents, and a different potential for differing from a specific cell type.

"Perhaps the most characteristic example of asymmetrical divisions is that of mother cells, which, thanks to this process, can regenerate after each division at the same time as producing more specialized cells that make it possible to build the different types of tissue. Correct duplication of mother cells is fundamental for maintaining tissue architecture. So a reduced number of these cells can lead to disorganization of the tissue and premature aging, while an excessive number can lead to tissue hyperplasia or the development of tumors," explains the researcher Fernando Monie Casas, director of the study.

During cell division, the microtubule-organizing centers (MTOCs) organize the formation of the mitotic spindle, the molecular machinery that allows for the equal distribution of the chromosomes in mitosis. Initially, cells have only one MTOC, which, like the genome, is duplicated during cell division. After their duplication, the original MTOC and the newly generated one differ in size, composition and age, and, when mitosis is finished, they are shared between the cells that are produced by the division.

"Curiously, it has been found that these structures can be inherited following a predetermined pattern, and not randomly, during asymmetrical division of some cells. This surprising phenomenon is conserved in an evolutionary way and has been observed both in microorganisms and in mother cells from animals and humans. However, its biological function is unknown. The distinguishing heredity of MTOCs was originally seen in Saccharomyces cerevisiae, a single-cell organism in which each division is inherently asymmetrical, which has made it a classic experimental model of incalculable value for the study of these processes," Monje Casa says.

For this project, the researchers have generated a genetically modified strain of this organism in which they have managed to invert the normal heredity of MTOCs in a constitutive way, and to test the physiological consequences. The results of their studies, published in Nature Cell Biology, show that the asymmetrical heredity of the MTOCs permits the different distribution of damaged cell molecules and organelles between the mother cell and the daughter cell, which is fundamental to maintaining life expectancy in Saccharomyces cerevisiae and avoiding premature cell aging.

Due to the high degree of conservation of the mechanisms that facilitate the generation of asymmetry during , the results could be of great importance for explaining possible connections between problems during the asymmetrical distribution of MTOCs in mother cells and the development of aging-related diseases such as cancer or neurodegenerative processes. This is especially interesting in the case of some hereditary disorders like autosomal recessive primary microcephaly (MCPH), a rare disease that is characterized by problems during neurodevelopment that result in an abnormally small head and brain. This disorder has been associated with up to 12 genes, the majority of which are related to the function of the MTOCs that form the mitotic spindle, which opens the door to a possible connection between the origin of this syndrome and the incorrect distribution of these structures.

Explore further

Studying mitosis' structure to understand the inside of cancer cells

More information: Javier Manzano-López et al. Asymmetric inheritance of spindle microtubule-organizing centres preserves replicative lifespan, Nature Cell Biology (2019). DOI: 10.1038/s41556-019-0364-8
Journal information: Nature Cell Biology

Citation: A new mechanism linked to premature aging in mother cells (2019, September 30) retrieved 17 November 2019 from https://phys.org/news/2019-09-mechanism-linked-premature-aging-mother.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments