Solving the longstanding mystery of how friction leads to static electricity

static electricity
Credit: CC0 Public Domain

Most people have experienced the hair-raising effect of rubbing a balloon on their head or the subtle spark caused by dragging socked feet across the carpet. Although these experiences are common, a detailed understanding of how they occur has eluded scientists for more than 2,500 years.

Now a Northwestern University team developed a new model that shows that rubbing two objects together produces , or triboelectricity, by bending the tiny protrusions on the surface of materials.

This new understanding could have important implications for existing electrostatic applications, such as energy harvesting and printing, as well as for avoiding potential dangers, such as fires started by sparks from electricity.

The research will be published on Thursday, Sept. 12, in the journal Physical Review Letters. Laurence Marks, professor of materials science and engineering in Northwestern's McCormick School of Engineering, led the study. Christopher Mizzi and Alex Lin, doctoral students in Marks's laboratory, were co-first authors of the paper.

Greek philosopher Thales of Miletus first reported friction-induced static electricity in 600 B.C. After rubbing amber with fur, he noticed the fur attracted dust.

"Since then, it has become clear that rubbing induces static charging in all insulators—not just fur," Marks said. "However, this is more or less where the scientific consensus ended."

At the nanoscale, all materials have rough surfaces with countless tiny protrusions. When two materials come into contact and rub against one another, these protrusions bend and deform.

Marks's team found that these deformations give rise to voltages that ultimately cause static charging. This phenomenon is called the "flexoelectric effect," which occurs when the separation of charge in an insulator arises from deformations such as bending.

Using a simple model, the Northwestern team showed that voltages arising from the bending protrusions during rubbing are, indeed, large enough to cause static electricity. This work explains a number of experimental observations, such as why charges are produced even when two pieces of the same material are rubbed together and predicts experimentally measured charges with remarkable accuracy.

"Our finding suggests that triboelectricity, flexoelectricity and friction are inextricably linked," Marks said. "This provides much insight into tailoring triboelectric performance for current applications and expanding functionality to new technologies."

"This is a great example of how can explain everyday phenomena which hadn't been understood previously, and of how research in one area—in this case friction and wear—can lead to unexpected advances in another area," said Andrew Wells, a program director at the National Science Foundation (NSF), which funded the research. "NSF funds research like this in materials science and engineering for new knowledge that can one day open new opportunities."


Explore further

Static electricity could charge our electronics

More information: Does Flexoelectricity Drive Triboelectricity? arXiv:1904.10383 [cond-mat.mtrl-sci] arxiv.org/abs/1904.10383
Journal information: Physical Review Letters

Citation: Solving the longstanding mystery of how friction leads to static electricity (2019, September 10) retrieved 18 September 2019 from https://phys.org/news/2019-09-longstanding-mystery-friction-static-electricity.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
2234 shares

Feedback to editors

User comments

Sep 10, 2019
The triboelectric effect

Commonly known as static electricity
When to dissimilar materials come into contact
For when they come into contact
A temporary bond is made
This is the friction, between these two materials, when the bond is broken
Leaving electrons on one or the other material
Where a charge of static builds up with further frictional rubbing
Discharging in a flash of static

Sep 10, 2019
A macro scale model of this effect is the piezoelectric crystals used to spark some cigarette lighters.
The bending materials do not have to be different, no "bond" is made. The energy of bending separates electrons which then move to normalize their charge.
Interesting findings in that they were able to isolate these events from the first bending to the spark discharge. Not an easy task.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more