
 

Researchers use machine learning technique
to rapidly evaluate new transition metal
compounds
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Results from an artificial neural network (ANN) analysis may not be reliable for
molecules that are too different from those on which the ANN was trained. The
black clouds shown here cover transition metal complexes in the data set whose
numeric representations are too distant from those of the training complexes to
be considered reliable. Credit: Massachusetts Institute of Technology
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In recent years, machine learning has been proving a valuable tool for
identifying new materials with properties optimized for specific
applications. Working with large, well-defined data sets, computers learn
to perform an analytical task to generate a correct answer and then use
the same technique on an unknown data set.

While that approach has guided the development of valuable new
materials, they've primarily been organic compounds, notes Heather
Kulik Ph.D. '09, an assistant professor of chemical engineering. Kulik
focuses instead on inorganic compounds—in particular, those based on 
transition metals, a family of elements (including iron and copper) that
have unique and useful properties. In those compounds—known as
transition metal complexes—the metal atom occurs at the center with
chemically bound arms, or ligands, made of carbon, hydrogen, nitrogen,
or oxygen atoms radiating outward.

Transition metal complexes already play important roles in areas ranging
from energy storage to catalysis for manufacturing fine chemicals—for
example, for pharmaceuticals. But Kulik thinks that machine learning
could further expand their use. Indeed, her group has been working not
only to apply machine learning to inorganics—a novel and challenging
undertaking—but also to use the technique to explore new territory. "We
were interested in understanding how far we could push our models to
do discovery—to make predictions on compounds that haven't been seen
before," says Kulik.

Sensors and computers

For the past four years, Kulik and Jon Paul Janet, a graduate student in
chemical engineering, have been focusing on transition metal complexes
with "spin"—a quantum mechanical property of electrons. Usually,
electrons occur in pairs, one with spin up and the other with spin down,
so they cancel each other out and there's no net spin. But in a transition
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metal, electrons can be unpaired, and the resulting net spin is the
property that makes inorganic complexes of interest, says Kulik.
"Tailoring how unpaired the electrons are gives us a unique knob for
tailoring properties."

A given complex has a preferred spin state. But add some energy—say,
from light or heat—and it can flip to the other state. In the process, it
can exhibit changes in macroscale properties such as size or color. When
the energy needed to cause the flip—called the spin-splitting energy—is
near zero, the complex is a good candidate for use as a sensor, or
perhaps as a fundamental component in a quantum computer.

Chemists know of many metal-ligand combinations with spin-splitting
energies near zero, making them potential "spin-crossover" (SCO)
complexes for such practical applications. But the full set of possibilities
is vast. The spin-splitting energy of a transition metal complex is
determined by what ligands are combined with a given metal, and there
are almost endless ligands from which to choose. The challenge is to find
novel combinations with the desired property to become SCOs—without
resorting to millions of trial-and-error tests in a lab.

Translating molecules into numbers

The standard way to analyze the electronic structure of molecules is
using a computational modeling method called density functional theory,
or DFT. The results of a DFT calculation are fairly accurate—especially
for organic systems—but performing a calculation for a single
compound can take hours, or even days. In contrast, a machine learning
tool called an artificial neural network (ANN) can be trained to perform
the same analysis and then do it in just seconds. As a result, ANNs are
much more practical for looking for possible SCOs in the huge space of
feasible complexes.
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This graphic represents a sample transition metal complex. A transition metal
complex consists of a central transition metal atom (orange) surrounded by an
array of chemically bound organic molecules in structures known as ligands.
Credit: Massachusetts Institute of Technology
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Because an ANN requires a numerical input to operate, the researchers'
first challenge was to find a way to represent a given transition metal
complex as a series of numbers, each describing a selected property.
There are rules for defining representations for organic molecules,
where the physical structure of a molecule tells a lot about its properties
and behavior. But when the researchers followed those rules for
transition metal complexes, it didn't work. "The metal-organic bond is
very tricky to get right," says Kulik. "There are unique properties of the
bonding that are more variable. There are many more ways the electrons
can choose to form a bond." So the researchers needed to make up new
rules for defining a representation that would be predictive in inorganic
chemistry.

Using machine learning, they explored various ways of representing a
transition metal complex for analyzing spin-splitting energy. The results
were best when the representation gave the most emphasis to the
properties of the metal center and the metal-ligand connection and less
emphasis to the properties of ligands farther out. Interestingly, their
studies showed that representations that gave more equal emphasis
overall worked best when the goal was to predict other properties, such
as the ligand-metal bond length or the tendency to accept electrons.

Testing the ANN

As a test of their approach, Kulik and Janet—assisted by Lydia Chan, a
summer intern from Troy High School in Fullerton, California—defined
a set of transition metal complexes based on four transition
metals—chromium, manganese, iron, and cobalt—in two oxidation
states with 16 ligands (each molecule can have up to two). By combining
those building blocks, they created a "search space" of 5,600
complexes—some of them familiar and well-studied, and some of them
totally unknown.
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In previous work, the researchers had trained an ANN on thousands of
compounds that were well-known in transition metal chemistry. To test
the trained ANN's ability to explore a new chemical space to find
compounds with the targeted properties, they tried applying it to the pool
of 5,600 complexes, 113 of which it had seen in the previous study.

The result was the plot labeled "Figure 1" in the slideshow above, which
sorts the complexes onto a surface as determined by the ANN. The white
regions indicate complexes with spin-splitting energies within 5 kilo-
calories per mole of zero, meaning that they are potentially good SCO
candidates. The red and blue regions represent complexes with spin-
splitting energies too large to be useful. The green diamonds that appear
in the inset show complexes that have iron centers and similar
ligands—in other words, related compounds whose spin-crossover
energies should be similar. Their appearance in the same region of the
plot is evidence of the good correspondence between the researchers'
representation and key properties of the complex.

But there's one catch: Not all of the spin-splitting predictions are
accurate. If a complex is very different from those on which the network
was trained, the ANN analysis may not be reliable—a standard problem
when applying machine learning models to discovery in materials
science or chemistry, notes Kulik. Using an approach that looked
successful in their previous work, the researchers compared the numeric
representations for the training and test complexes and ruled out all the
test complexes where the difference was too great.

Focusing on the best options

Performing the ANN analysis of all 5,600 complexes took just an hour.
But in the real world, the number of complexes to be explored could be
thousands of times larger—and any promising candidates would require
a full DFT calculation. The researchers therefore needed a method of
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evaluating a big data set to identify any unacceptable candidates even
before the ANN analysis. To that end, they developed a genetic
algorithm—an approach inspired by natural selection—to score
individual complexes and discard those deemed to be unfit.
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An artificial neural network previously trained on well-known compounds
analyzed 5,600 transition metal complexes to identify potential spin-crossover
complexes. The result was this plot, in which complexes are colored based on
their spin-splitting energy in kilocalories per mole (kcal/mol). In promising
candidates, that energy is within 5 kcal/mol of zero. The bright green diamonds
in the inset are related complexes. Credit: Massachusetts Institute of Technology

To prescreen a data set, the genetic algorithm first randomly selects 20
samples from the full set of complexes. It then assigns a "fitness" score
to each sample based on three measures. First, is its spin-crossover
energy low enough for it to be a good SCO? To find out, the neural
network evaluates each of the 20 complexes. Second, is the complex too
far away from the training data? If so, the spin-crossover energy from
the ANN may be inaccurate. And finally, is the complex too close to the
training data? If so, the researchers have already run a DFT calculation
on a similar molecule, so the candidate is not of interest in the quest for
new options.

Based on its three-part evaluation of the first 20 candidates, the genetic
algorithm throws out unfit options and saves the fittest for the next
round. To ensure the diversity of the saved compounds, the algorithm
calls for some of them to mutate a bit. One complex may be assigned a
new, randomly selected ligand, or two promising complexes may swap
ligands. After all, if a complex looks good, then something very similar
could be even better—and the goal here is to find novel candidates. The
genetic algorithm then adds some new, randomly chosen complexes to
fill out the second group of 20 and performs its next analysis. By
repeating this process a total of 21 times, it produces 21 generations of
options. It thus proceeds through the search space, allowing the fittest
candidates to survive and reproduce, and the unfit to die out.
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Performing the 21-generation analysis on the full 5,600-complex data set
required just over five minutes on a standard desktop computer, and it
yielded 372 leads with a good combination of high diversity and
acceptable confidence. The researchers then used DFT to examine 56
complexes randomly chosen from among those leads, and the results
confirmed that two-thirds of them could be good SCOs.

While a success rate of two-thirds may not sound great, the researchers
make two points. First, their definition of what might make a good SCO
was very restrictive: For a complex to survive, its spin-splitting energy
had to be extremely small. And second, given a space of 5,600
complexes and nothing to go on, how many DFT analyses would be
required to find 37 leads? As Janet notes, "It doesn't matter how many
we evaluated with the neural network because it's so cheap. It's the DFT
calculations that take time."

Best of all, using their approach enabled the researchers to find some
unconventional SCO candidates that wouldn't have been thought of
based on what's been studied in the past. "There are rules that people
have—heuristics in their heads—for how they would build a spin-
crossover complex," says Kulik. "We showed that you can find
unexpected combinations of metals and ligands that aren't normally
studied but can be promising as spin-crossover candidates."

Sharing the new tools

To support the worldwide search for new materials, the researchers have
incorporated the genetic algorithm and ANN into "molSimplify," the
group's online, open-source software toolkit that anyone can download
and use to build and simulate transition metal complexes. To help
potential users, the site provides tutorials that demonstrate how to use
key features of the open-source software codes. Development of
molSimplify began with funding from the MIT Energy Initiative in
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2014, and all the students in Kulik's group have contributed to it since
then.

The researchers continue to improve their neural network for
investigating potential SCOs and to post updated versions of
molSimplify. Meanwhile, others in Kulik's lab are developing tools that
can identify promising compounds for other applications. For example,
one important area of focus is catalyst design. Graduate student in
chemistry Aditya Nandy is focusing on finding a better catalyst for
converting methane gas to an easier-to-handle liquid fuel such as
methanol—a particularly challenging problem. "Now we have an outside
molecule coming in, and our complex—the catalyst—has to act on that
molecule to perform a chemical transformation that takes place in a
whole series of steps," says Nandy. "Machine learning will be super-
useful in figuring out the important design parameters for a transition 
metal complex that will make each step in that process energetically
favorable."

  More information: Jon Paul Janet et al. Accelerating Chemical
Discovery with Machine Learning: Simulated Evolution of Spin
Crossover Complexes with an Artificial Neural Network, The Journal of
Physical Chemistry Letters (2018). DOI: 10.1021/acs.jpclett.8b00170 

Jon Paul Janet et al. Predicting electronic structure properties of
transition metal complexes with neural networks, Chemical Science
(2017). DOI: 10.1039/C7SC01247K

Jon Paul Janet et al. Resolving Transition Metal Chemical Space: Feature
Selection for Machine Learning and Structure–Property Relationships, 
The Journal of Physical Chemistry A (2017). DOI:
10.1021/acs.jpca.7b08750

Aditya Nandy et al. Strategies and Software for Machine Learning
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