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Constructing the matchgate MERA (multiscale entanglement renormalization
ansatz simulation; mMERA) toy model. A: The standard MERA tensor network
(left) in the numerical matchgate setting of the study is equivalent to B-D:
Isometries, disentanglers, and triangulated disentanglers (from left to right)
expressed as matchgate tensors. The free parameters a, b, c fix the components
of the generating matrices. Credit: Science Advances, doi:
10.1126/sciadv.aaw0092

Tensor networks take a central role in quantum physics as they can
provide an efficient approximation to specific classes of quantum states.
The associated graphical language can also easily describe and pictorially
reason about quantum circuits, channels, protocols and open systems. In
a recent study, A. Jahn and a research team in the departments of
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complex quantum systems, materials and energy and mathematics and
computer science in Germany introduced a versatile and efficient
framework to study tensor networks by extending previous tools. The
researchers used bulk tiling (computing geometric technique) in their
work to obtain highly accurate critical data and established a link
between holographic quantum error-correcting codes and tensor
networks. They expect the work to stimulate further investigations of
tensor network models to capture bulk-boundary correspondences. The
results are now published on Science Advances.

The AdS/CFT correspondence, which stands for anti-de
Sitter/conformal field theory correspondence, is one of the largest areas
of research in string theory, and is an example in the context of bulk-
boundary dualities in which a holographic duality exists between gravity
in a bulk space and a critical quantum field on its boundary. This
correspondence that relates two very different theories was originally
formulated by physicist Juan M. Maldacena in 1997, and is considered a
significantly important result in string theory within the last 20 years.

A key feature of these dualities is the relationship between bulk
geometry and boundary entanglement entropies, which physicists had
previously illuminated using the Ryu-Takayanagi formula. Since it is
important to understand entanglement in the context of AdS/CFT,
researchers realized the necessity of tensor networks as an ideal
framework to construct holographic toy models, such as the multiscale
entanglement renormalization ansatz simulation (MERA). Physicists had
previously explored the realization that quantum error correction could
be facilitated by a holographic duality, which further connected to ideas
from quantum information theory. Although researchers did successfully
construct several tensor network models to reproduce a variety of
aspects on AdS/CFT, they still lacked a general understanding of the
features and limits of tensor network holography. Specific obstacles to
the process include the potentially large parameter spaces of tensor
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networks and the considerable computational costs involved.

  
 

  

Geometries of tensor networks. Discretizations of flat (A) and hyperbolic space
(B and C) with a triangular tiling (blue edges), into which a tensor network is
embedded (black lattice). In the matchgate formalism, joint edges between
triangles correspond to an integration over a pair of Grassmann numbers,
analogous to tensor network contraction over indices. While (A) and (B) show
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regular tilings, (C) presents a nonregular MERA-like tiling, which the scientists
named the matchgate MERA (mMERA). Credit: Science Advances, doi:
10.1126/sciadv.aaw0092

In the present work, Jahn et al. overcame the existing challenges by
applying highly efficient contraction techniques developed by matchgate
tensors. The versatile techniques allowed the research team to
comprehensively study the interplay of geometry and correlations in 
Gaussian fermionic tensor networks by incorporating toy models of
quantum error correction. They also included previous tensor network
approaches such as the "MERA' model within the present work, to
highlight connections between them. The team restricted the study to
tensor networks that are nonunitary and real, resembling a Euclidean
evolution from the bulk to boundary. Jahn et al. provided new
approaches in the context of tensor network renormalization, to
substantiate the capability of tensor networks to describe bulk-boundary
correspondences beyond known models. The present work is preliminary
and provides a starting point for more systematic studies on holography
in tensor networks.
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HaPPY/matchgate equivalence. The holographic pentagon code of the HaPPY
model for fixed computational bulk input (left) is equal to a matchgate tensor
network on a hyperbolic pentagon tiling (right). Credit: Science Advances, doi:
10.1126/sciadv.aaw0092

The scientists first applied their framework to the highly symmetric class
of regular bulk tilings to implement the holographic error correcting
code (HaPPY code) proposed elsewhere. Thereafter, they explored the
versatility of the framework to extend it toward more physical setups.
They first used the HaPPY code toy model to understand the
bulk/boundary correspondence with bulk tiling of holographic
pentagons, where each pentagon tile encoded one fault-tolerant logical
qubit. Briefly, the research team observed that fixing the bulk degrees of
freedom to computational basis states could give rise to a matchgate
tensor network. They showed the computational basis states to be pure
Gaussian and concluded that for fixed computational input in the bulk,
the holographic pentagram code could yield a matchgate tensor on the
boundary. Using a Schläfli symbol {p,q} where p = the number of edges
per polygon and q = the number of polygons around each corner, they
specified the hyperbolic geometry of the HaPPY model.

After Jahn et al. showed their model framework to include the
holographic pentagon code built from five-qubit stabilizer states for
fixed bulk inputs. They showed the boundary states to correspond to
nonlocal bulk pairing with exotic particles known as Majorana fermions.
The work thus opened an avenue to study the state properties of a
holographic model at large sizes. The scientists further calculated the
two-point correlators and entanglement entropies of the system. They
then showed that the critical and gapped Gaussian boundary states could
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be realized beyond known models using various bulk tilings. In the
present work they reproduced the average scaling properties of the Ising
CFT (conformal field theory) toy model; simplest possible model in
theoretical physics that allowed methods of Euclidean quantum field
theory and the study of critical phenomena.

  
 

  

Boundary state correlations. (A to C) Majorana covariance matrix Γ with color-
coded entries for a boundary state of a hyperbolic {5,4} tiling of the HaPPY
code with fixed 0¯ input on each tile. Boundary consists of 2L = 10, 40, and 50
Majorana sites, respectively. (D to F) Field correlation matrix 〈ψjψk −
ψkψj〉/2 = (Γ2j,2k−1 + Γ2j−1,2k)/4 for boundary states of the {3,6}, {3,7}, and
mMERA tiling at criticality with L = 63, 69, and 64 boundary sites, respectively.
Matrix entries are normalized to the same color scale. The tiling corresponding
to each correlation matrix in (A) to (F) is shown in the lower left corner. Credit:
Science Advances, doi: 10.1126/sciadv.aaw0092
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Critical correlations and entanglement scaling. (A and B) Boundary state
properties of the HaPPY code at 2605 boundary sites. (A) shows average
correlations at boundary distance d, computed as the relative frequency n of
Majorana pairs. Dashed gray line shows an n(d)~1/d numerical fit. (B) shows the
scaling of average entanglement entropy El(S) with subsystem size l. Dashed
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gray line shows numerical fit using (11). (C) El(S) for regular tilings at the
critical values a = 0.580 for a {3,6} tiling (blue) and at a = 0.609 for the {3,7}
tiling (yellow) with 348 boundary sites each. The dashed gray line shows the
exact c = 1/2 CFT solution. Credit: Science Advances, doi:
10.1126/sciadv.aaw0092

Jahn et al. then constructed a Euclidean matchgate tensor network based
on the previously developed MERA geometry and named it the
matchgate MERA (mMERA). This tiling invariance which they
expressed as a triangulation (multiple measures to capture a construct),
recovered the Ising CFT with little computational cost. The
computational optimization process in the study only took a few minutes
on a desktop computer for a network with hundreds of tensors.

In this way, A. Jahn and colleagues introduced an efficient preliminary
framework to study tensor networks and proposed for further studies
within the Gaussian setting to focus on positively curved bulks, higher
dimensional models and random tensors. Additional studies beyond
Gaussianity could explore interacting fermionic tensor networks by weak-
coupling expansion or under locally restricted interactions. Both of the
suggested possible extensions of the framework presented in the study
will only require computational scaling polynomial to the system size to
avoid prohibitive computational efforts of general methods to extract
tensor contraction.

  More information: A. Jahn et al. Holography and criticality in
matchgate tensor networks, Science Advances (2019). DOI:
10.1126/sciadv.aaw0092 
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