
 

Illusive patterns in math explained by ideas
in physics
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The “erosion” of the probability density of random walkers at the origin at the
eighth time step (N ≥ 8, not shown) offers some physical intuition into why a
pattern found in some Borwein integrals suddenly breaks at the same point.
Credit: Majumdar and Trizac. ©2019 American Physical Society

Patterns appear widely throughout nature and math, from the Fibonacci
spirals of sea shells to the periodicity of crystals. But certain math
problems can sometimes trick the human solver into seeing a pattern, but
then, out of the blue, the pattern suddenly disappears. These illusive
patterns crop up in many areas of math, with one example coming from
certain calculus integrals that have deceived the intuition of even the best
mathematicians.
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Now in a new study, two physicists have approached these integrals
using the physics concept of random walks. Whereas solving these
integrals usually requires a great deal of effort and ingenuity, the
physicists have shown that the new approach can find solutions
intuitively and sometimes even without the need for explicit calculations.

Physicists Satya N. Majumdar and Emmanuel Trizac at the University of
Paris-Sud, CNRS, in France, have published a paper on using random
walkers to solve integrals in a recent issue of Physical Review Letters.

"We have shown that physics insight allows us to obtain in a calculation-
free way a wealth of curious integrals, and in addition, to obtain
previously unknown identities (either integrals, or equalities between
discrete sums and integrals)," Trizac told Phys.org. "Our work reveals
that when mathematical intuition is deceived, physical intuition may save
the day."

Patterns in Borwein integrals

The integrals in question (see figure) are "Borwein integrals," named
after David and Jonathan Borwein (father and son), who noticed unusual
patterns in them in 2001. The Borwein integrals involve the product of
sinc (cardinal sine) functions, which have widespread applications, such
as in optics, signal processing, and other areas. These two particular
integrals can be used to compute the volumes of hypercubes.

Solving the Borwein integrals involves substituting numbers in for the
variable n. Each number gives a different solution value, allowing
mathematicians to observe patterns in the resulting sequence of values.
For example, for the first integral (In), when you substitute the numbers 
n = 1-7, you get the answer π every time. But when you get to n = 8, the
answer is ever so slightly less than π (roughly π – 10-10). The first time
mathematicians calculated this value on a computer, they thought there
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must be a bug in the software. But the answer was confirmed, and the
subsequent terms (for n = 9, 10, etc.) keep getting ever so slightly
smaller.

  
 

  

Credit: Majumdar and Trizac. ©2019 American Physical Society

Some patterns persist even longer. For the second integral, Jn, the first 56
terms of the sequence (obtained by substituting the numbers 1 through
56 for n) are all π/2. But the 57th term is approximately π/2—10-110, and
the subsequent terms continue to decrease. (Things can become even
more extreme: For one variant of the Borwein integrals—not discussed
here—a constant value pattern holds for an astounding first 10176 terms
of the sequence, after which point the pattern finally breaks.)

Mathematicians can explain why these patterns suddenly break, at least
in mathematical terms. Notice that both Borwein integrals above contain
the function sinc(ank), where an = 1/(2n—1). If you substitute in the
numbers 1, 2, 3, … for n in this expression, you get the sequence 1, 1/3,
1/5, 1/7, 1/9, ... . The Borweins noticed that the first term, 1, is not only
larger than all of the other terms that come after, but it's even larger than

3/7



 

the sum of the next few terms—the second through seventh terms, to be
exact, as 1/3 + 1/5 + 1/7 + 1/9 + 1/11 + 1/13 = 0.955… , which is less
than 1. But when adding the eighth term, 1/15, to this sum, the answer is
1.02…, so just above 1. It turns out that it's no coincidence that the
seventh term is the last term for which the integral evaluates to π, and
the eighth term is the point at which the pattern breaks.

The Borweins proved a theorem (see figure) that states this idea in more
general terms. The theorem holds for the second integral, Jn, as well.
Accounting for the cosine function in Jn changes the expression above to
2/(2n—1), due to the property cos(a)sinc(a) = sinc(2a), so that the first
term is 2 instead of 1. As the sum of the second through 56th terms of
the expression is less than 2, but adding the 57th term pushes the sum
over 2, the theorem holds.

Random walkers

Although the theorem helps to explain when the Borwein integrals'
temporary patterns break, it is still not completely clear why the theorem
holds in the first place.

In the new paper, Majumdar and Trizac have offered some physical
intuition into the theorem by connecting it to some well-understood
concepts in probability theory and statistical mechanics. They noticed
that the integral in the theorem has close ties to the uniform probability
distribution, which is widely used throughout science. Specifically, the
Fourier transform of the uniform probability distribution happens to be
just the sinc function, which yields the Borwein integral for n = 1. This
connection bridges the Borwein integrals to the physical world, so that
by using relevant parameters, events that follow a uniform distribution
can be used to model the sequence of solutions to the Borwein integrals.

To describe this connection in a more physical context, the researchers
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looked at random walkers. A random walker is an abstract object that
can move a certain distance in any direction, where the exact distance is
chosen randomly from a continuous interval of values, and each of these
values is equally likely to be chosen (i.e., it follows a uniform
distribution). Random walkers can accurately model a variety of random
phenomena, such as stock market prices, the paths of foraging animals,
and the paths of molecules in a gas, which occur in one, two, or three
dimensions, respectively.

In the new paper, the physicists show that the movements of infinitely
many random walkers can be used to model the emergence and
disappearance of the patterns in the Borwein integrals. To begin, the
random walkers all start at the point zero on the one-dimensional number
line. For the first step, each walker is allowed to move a random distance
of up to 1 unit, either left or right. For the second step, each walker may
move a random distance of up to 1/3, then a random distance of up to
1/5, then 1/7, 1/9, etc. That is, each successive allowable step distance
corresponds to the next value of the expression 1/(2n—1).

The main question is, what is the fraction of random walkers at the
starting point (the origin) after each time step? It turns out that the
fraction (more precisely, the probability density) of walkers at the origin
at each time step n corresponds to the solution to the Borwein integral
using the same n value.

As the physicists explain, for the first seven steps, the probability density
that a walker ends up at the origin is always ½, which via the theorem
above corresponds to an integral value of π. The key idea is that, up to
this time, the density of walkers at the origin is the same as if the entire
number line was uniformly populated with walkers. In reality, as the
maximum distance of each step is restricted, only part of the number
line is accessible, i.e., the walkers' world is finite.

5/7

https://phys.org/tags/walker/


 

However, for the first seven steps, the walkers at the origin perceive that
their world is infinite, since they do not possess any information about
the existence of boundaries that would indicate that the world is finite.
This is because none of those walkers that reached the outer boundary of
their world (+1 or -1 after the first step) would have been able to make it
back to the starting point in less than seven steps, even if taking the
maximum size steps allowed and all in the direction toward the starting
point. As these walkers had zero probability of showing up at the starting
point before the eighth step, they could not affect the fraction of random
walkers at the starting point. So for the first seven steps, the density of
walkers at the origin is fixed at ½ (it is "protected").

But once those walkers that have reached +1 or -1 return to the origin,
the situation changes. After the eighth step, it's possible that some of
these walkers return to the starting point. Now these walkers act as
"messengers" in the sense that their return to the starting point reveals
the existence of a boundary, telling the other walkers at the origin that
their world is finite, and therefore influencing the density of walkers at
the origin.

Since these messenger walkers made it back to the starting point, it
becomes clear that some other boundary-reaching walkers did not make
it back, but instead may have kept continuing to move further away. As a
result, the probability distribution becomes more spread out, causing the
fraction of walkers at the origin to gradually erode from ½ (or π for the
integral). It is this erosion that explains why the values of the first
Borwein integral decrease ever so slightly for n ≥ 8. A similar argument
holds for the second Borwein integral (see video).

By connecting the Borwein integrals to the probabilities of random
walkers, the new results offer a completely different approach to solving
these integrals than through direct calculation. The physicists showed
that the same approach can be applied to many other integrals in addition
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to the two described here, including extensions to higher dimensions.
The researchers expect that the approach has the potential to provide
calculation-free solutions to many other integrals that are otherwise very
difficult to solve.

"Random walk problems and their infinite ramifications form one of the
cornerstones of modern physics with a wide range of applications in
physics, chemistry, biology, engineering, etc.," Trizac said. "Since our
derivation of intriguing integrals involves basic concepts from random
walk theory, we expect that new identities and integrals, with real-world
applications, may be derived using our key idea in the near future."

  More information: Satya N. Majumdar et al. When Random Walkers
Help Solving Intriguing Integrals, Physical Review Letters (2019). DOI:
10.1103/PhysRevLett.123.020201
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