A bubbly new way to detect the magnetic fields of nanometer-scale particles

A bubbly new way to detect the magnetic fields of nanometer-scale particles

As if they were bubbles expanding in a just-opened bottle of champagne, tiny circular regions of magnetism can be rapidly enlarged to provide a precise method of measuring the magnetic properties of nanoparticles.

The technique, uncorked by researchers at the National Institute of Standards and Technology (NIST) and their collaborators, provides a deeper understanding of the magnetic behavior of nanoparticles. Because the method is fast, economical and does not require special conditions—measurements can occur at room temperature and under , or even in liquids—it provides manufacturers with a practical way to measure and improve their control of the properties of magnetic nanoparticles for a host of medical and environmental applications.

Magnetic nanoparticles can serve as tiny actuators, magnetically pushing and pulling other small objects. Relying on this property, scientists have employed the nanoparticles to clean up chemical spills and assemble and operate nanorobotic systems. Magnetic nanoparticles even have the potential to treat cancer—rapidly reversing the magnetic field of nanoparticles injected into a tumor generates enough heat to kill cancer cells.

Individual magnetic nanoparticles generate magnetic fields like the north and south poles of familiar bar magnets. These fields create magnetic —flat circles with initial diameters less than 100 nanometers (billionths of a meter)—on the surface of a magnetically sensitive film developed at NIST. The bubbles surround the nanoparticle pole that points opposite to the direction of the magnetic field of the film. Although they encode information about the magnetic orientation of the nanoparticles, the tiny bubbles are not easily detected with an optical microscope.

However, like bubbles in champagne, the magnetic bubbles can be expanded to hundreds of times their initial diameter. By applying a small , the team enlarged the diameter of the bubbles to tens of micrometers (millionths of a meter)—big enough to see with an optical microscope. The brighter signal of the enlarged bubbles rapidly revealed the magnetic orientation of individual nanoparticles.

After determining the initial magnetic orientation of the nanoparticles, the researchers used the enlarged bubbles to track the changes in that orientation as they applied an external magnetic field. Recording the strength of the external field required to flip the north and south magnetic poles of the nanoparticles revealed the magnitude of coercive field, a fundamental measure of the magnetic stability of the nanoparticles. This important property had previously been challenging to measure for individual nanoparticles.

A tiny magnetic rod is placed over a strip of magnetic film. This nanorod has a particular magnetic orientation, and a fringe field that interacts with the film, creating a bubble-shaped area where the direction of magnetism is reversed. By applying a second magnetic field, researchers can change the magnetic orientation of the nanorod, causing the magnetic bubble to shift from one end of the rod to the other. Measuring the location of the bubble can give scientists insight into the geometry and magnetic properties of the nanorod, and reveal if it is alone or clustered with other nanoparticles. Credit: S. Kelley/NIST

Samuel M. Stavis of NIST and Andrew L. Balk, who conducted most of his research at the Los Alamos National Laboratory and NIST, along with colleagues at NIST and the Johns Hopkins University, described their findings in a recent issue of Physical Review Applied.

The team examined two types of magnetic nanoparticles—rod-shaped particles made of a nickel-iron alloy and irregularly shaped particle clusters made of iron oxide. The applied magnetic field that expanded the bubbles plays a similar role to that of the pressure in a bottle of champagne, Balk said. Under high pressure, when the champagne bottle is corked, the bubbles are essentially nonexistent, just as the magnetic bubbles on the film are too small to be detected by an optical microscope when no external magnetic field is applied. When the cork is popped and the pressure is lowered, the champagne bubbles expand, just as the external magnetic field enlarged the magnetic bubbles.

Each magnetic bubble reveals the orientation of the of a nanoparticle at the instant that the bubble formed. To study how the orientation varied with time, the researchers generated thousands of new bubbles every second. In this way, the researchers measured changes in the magnetic orientation of the nanoparticles at the moment that they occurred.

To enhance the sensitivity of the technique, the researchers tuned the magnetic properties of the film. In particular, the team adjusted the Dzyaloshinskii-Moriya (DMI) interaction, a quantum-mechanical phenomenon that imposes a twist in the bubbles within the film. This twist reduced the energy needed to form a bubble, providing the high sensitivity necessary to measure the field of the smallest magnetic particles in the study.

Other methods to measure magnetic nanoparticles, which require cooling with liquid nitrogen, working in a vacuum chamber, or measuring the field at only a single location, do not allow such rapid determination of nanoscale magnetic fields. With the new technique, the team rapidly imaged the magnetic fields from the particles over a large area at room temperature. The improvement in speed, convenience and flexibility enables new experiments in which researchers can monitor the behavior of in real time, such as during the assembly and operation of magnetic microsystems with many parts.

The study is the most recent example of an ongoing effort at NIST to make devices that improve the measurement capabilities of optical microscopes, an instrument available in most labs, said Stavis. This enables rapid measurement of the properties of single for both fundamental research and for nanoparticle manufacturing, he added.


Explore further

'Ant bridge'-inspired nanoparticle assembly fixes broken electrical circuits

More information: Andrew L. Balk et al, Bubble Magnetometry of Nanoparticle Heterogeneity and Interaction, Physical Review Applied (2019). DOI: 10.1103/PhysRevApplied.11.061003

This story is republished courtesy of NIST. Read the original story here.

Citation: A bubbly new way to detect the magnetic fields of nanometer-scale particles (2019, June 11) retrieved 19 June 2019 from https://phys.org/news/2019-06-magnetic-fields-nanometer-scale-particles.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
860 shares

Feedback to editors

User comments

Jun 11, 2019
Well, combine this with the other article today about dark matter monopoles (fields are too weak to be detected with current tech) and build that super-sensitive detector.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more