
 

Chip design dramatically reduces energy
needed to compute with light

June 6 2019, by Rob Matheson

  
 

  

A new photonic chip design drastically reduces energy needed to compute with
light, with simulations suggesting it could run optical neural networks 10 million
times more efficiently than its electrical counterparts. Credit: MIT News

MIT researchers have developed a novel "photonic" chip that uses light
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instead of electricity—and consumes relatively little power in the
process. The chip could be used to process massive neural networks
millions of times more efficiently than today's classical computers do.

Neural networks are machine-learning models that are widely used for
such tasks as robotic object identification, natural language processing,
drug development, medical imaging, and powering driverless cars. Novel
optical neural networks, which use optical phenomena to accelerate
computation, can run much faster and more efficiently than their
electrical counterparts.

But as traditional and optical neural networks grow more complex, they
eat up tons of power. To tackle that issue, researchers and major tech
companies—including Google, IBM, and Tesla—have developed "AI 
accelerators," specialized chips that improve the speed and efficiency of
training and testing neural networks.

For electrical chips, including most AI accelerators, there is a theoretical
minimum limit for energy consumption. Recently, MIT researchers have
started developing photonic accelerators for optical neural networks.
These chips perform orders of magnitude more efficiently, but they rely
on some bulky optical components that limit their use to relatively small
neural networks.

In a paper published in Physical Review X, MIT researchers describe a
new photonic accelerator that uses more compact optical components
and optical signal-processing techniques, to drastically reduce both
power consumption and chip area. That allows the chip to scale to neural
networks several orders of magnitude larger than its counterparts.

Simulated training of neural networks on the MNIST image-
classification dataset suggest the accelerator can theoretically process
neural networks more than 10 million times below the energy-
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consumption limit of traditional electrical-based accelerators and about
1,000 times below the limit of photonic accelerators. The researchers are
now working on a prototype chip to experimentally prove the results.

"People are looking for technology that can compute beyond the
fundamental limits of energy consumption," says Ryan Hamerly, a
postdoc in the Research Laboratory of Electronics. "Photonic
accelerators are promising … but our motivation is to build a [photonic
accelerator] that can scale up to large neural networks."

Practical applications for such technologies include reducing energy
consumption in data centers. "There's a growing demand for data centers
for running large neural networks, and it's becoming increasingly
computationally intractable as the demand grows," says co-author
Alexander Sludds, a graduate student in the Research Laboratory of
Electronics. The aim is "to meet computational demand with neural 
network hardware … to address the bottleneck of energy consumption
and latency."

Joining Sludds and Hamerly on the paper are: co-author Liane Bernstein,
an RLE graduate student; Marin Soljacic, an MIT professor of physics;
and Dirk Englund, an MIT associate professor of electrical engineering
and computer science, a researcher in RLE, and head of the Quantum
Photonics Laboratory.

Compact design

Neural networks process data through many computational layers
containing interconnected nodes, called "neurons," to find patterns in the
data. Neurons receive input from their upstream neighbors and compute
an output signal that is sent to neurons further downstream. Each input is
also assigned a "weight," a value based on its relative importance to all
other inputs. As the data propagate "deeper" through layers, the network
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learns progressively more complex information. In the end, an output
layer generates a prediction based on the calculations throughout the
layers.

All AI accelerators aim to reduce the energy needed to process and move
around data during a specific linear algebra step in neural networks,
called "matrix multiplication." There, neurons and weights are encoded
into separate tables of rows and columns and then combined to calculate
the outputs.

In traditional photonic accelerators, pulsed lasers encoded with
information about each neuron in a layer flow into waveguides and
through beam splitters. The resulting optical signals are fed into a grid of
square optical components, called "Mach-Zehnder interferometers,"
which are programmed to perform matrix multiplication. The
interferometers, which are encoded with information about each weight,
use signal-interference techniques that process the optical signals and
weight values to compute an output for each neuron. But there's a scaling
issue: For each neuron there must be one waveguide and, for each
weight, there must be one interferometer. Because the number of
weights squares with the number of neurons, those interferometers take
up a lot of real estate.

"You quickly realize the number of input neurons can never be larger
than 100 or so, because you can't fit that many components on the chip,"
Hamerly says. "If your photonic accelerator can't process more than 100
neurons per layer, then it makes it difficult to implement large neural
networks into that architecture."

The researchers' chip relies on a more compact, energy efficient
"optoelectronic" scheme that encodes data with optical signals, but uses
"balanced homodyne detection" for matrix multiplication. That's a
technique that produces a measurable electrical signal after calculating
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the product of the amplitudes (wave heights) of two optical signals.

Pulses of light encoded with information about the input and output
neurons for each neural network layer—which are needed to train the
network—flow through a single channel. Separate pulses encoded with
information of entire rows of weights in the matrix multiplication table
flow through separate channels. Optical signals carrying the neuron and
weight data fan out to grid of homodyne photodetectors. The
photodetectors use the amplitude of the signals to compute an output
value for each neuron. Each detector feeds an electrical output signal for
each neuron into a modulator, which converts the signal back into a light
pulse. That optical signal becomes the input for the next layer, and so on.

The design requires only one channel per input and output neuron, and
only as many homodyne photodetectors as there are neurons, not
weights. Because there are always far fewer neurons than weights, this
saves significant space, so the chip is able to scale to neural networks
with more than a million neurons per layer.

Finding the sweet spot

With photonic accelerators, there's an unavoidable noise in the signal.
The more light that's fed into the chip, the less noise and greater the
accuracy—but that gets to be pretty inefficient. Less input light increases
efficiency but negatively impacts the neural network's performance. But
there's a "sweet spot," Bernstein says, that uses minimum optical power
while maintaining accuracy.

That sweet spot for AI accelerators is measured in how many joules it
takes to perform a single operation of multiplying two numbers—such as
during matrix multiplication. Right now, traditional accelerators are
measured in picojoules, or one-trillionth of a joule. Photonic
accelerators measure in attojoules, which is a million times more
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efficient.

In their simulations, the researchers found their photonic accelerator
could operate with sub-attojoule efficiency. "There's some minimum
optical power you can send in, before losing accuracy. The fundamental
limit of our chip is a lot lower than traditional accelerators … and lower
than other photonic accelerators," Bernstein says.

  More information: Ryan Hamerly et al. Large-Scale Optical Neural
Networks Based on Photoelectric Multiplication, Physical Review X
(2019). DOI: 10.1103/PhysRevX.9.021032

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.
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