A simplified method to categorize olive oil

The University of Cordoba has simplified the method to categorize olive oil
Lourdes Arce and Natividad Jurado, investigators of the Universidad de Cordoba. Credit: University of Cordoba

Olive oil classification is currently very costly and slow. In order to categorize oil into extra virgin (EVOO), virgin (VOO) and lampante olive oil (LOO), an offical method is used, consisting of a physicochemical analysis and a sensory analysis in the end. This last part is based on the work of a panel of expert tasters who try each olive oil one by one in order to determine its category. This process is very costly for the bottlers. For this reason, they are keen on developing a complementary analytical classification method. Moreover, there are very few expert olive oil tasters in other countries, hence the urgency to find another way to categorize olive oil that does not involve sensory analysis.

A University of Cordoba research group, headed by Analytical Chemistry Professor Lourdes Arce, has been working on a solution to this issue since 2011, with from the non-profit Spanish Olive Oil Interprofessional Organization.

The new methodology is based on analyzing the oil's aromatic fraction - that is to say - as if it were the nose of a human taster. This is done by using and , which is a technique that separates ions when in gas state.

This instrument generates 3-D graphics (with retention time, drift time and the intensity of the signal as variables) of each volatile chemical compound in each of , resulting in a large number of data to process, making it difficult for companies to adopt this methodology.

To ease its implementation, the group studied two strategies for dealing with data: the first used spectral fingerprints (as in all the chemical information in each olive oil) and the second used a series of specific signals, 113 of over 200,000 chemical data that make up a spectral fingerprint.

701 heterogeneous olive oil samples were analyzed. These samples came from different kinds of olives at different degrees of ripeness, from different geographical areas and that had been processed and stored in different ways. These samples were provided by the Spanish Olive Oil Interprofessional Organization in partnership with with the Spanish Ministry of Agriculture, Food and the Environment along with the Andalusian Regional Government's Department of Agriculture, Fishing and Rural Development.

In the end, it was concluded that the strategy based on markers was reliable in predicting the classification of olive oil samples, in addition to being easier to implement within the industry than the strategy of using the whole spectral fingerprint. In any case, the models should be recalibrated each year, and include new oil samples from the current season. The research group continues to work on this line of research in order to determine the minimum number of samples needed for recalibration without losing predictive ability to categorize olive oil.

Explore further

Easy ways to reap the benefits of extra virgin olive oil

More information: María del Mar Contreras et al, A robustness study of calibration models for olive oil classification: Targeted and non-targeted fingerprint approaches based on GC-IMS, Food Chemistry (2019). DOI: 10.1016/j.foodchem.2019.02.104
Journal information: Food Chemistry

Provided by University of Córdoba
Citation: A simplified method to categorize olive oil (2019, May 16) retrieved 23 September 2020 from https://phys.org/news/2019-05-method-categorize-olive-oil.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments