

Efficient, stable thermoelectric module based on high-performance liquid-like materials

May 23 2019

Credit: CC0 Public Domain

Based on high-performance liquid-like materials, scientists from the Shanghai Institute of Ceramics of the Chinese Academy of Sciences and Northwestern University in the U.S. fabricated a $Cu_2Se/Yb_{0.3}Co_4Sb_{12}$

thermoelectric module with eight n-type Ni/Ti/Yb_{0.3}Co₄Sb₁₂ legs and eight p-type Ni/Mo/Cu₂Se legs.

Their strategy goes beyond the normal design of TE modules based on traditional TE materials, thus realizing a high <u>energy</u> conversion <u>efficiency</u> of 9.1 percent and excellent service stability. The study was published in *Joule*.

The usual design of thermoelectric modules based on traditional materials only needs to realize <u>high efficiency</u> or high-power output through optimizing the geometry and interfaces of material legs. However, liquid-like ions present a new challenge and service stability must be included in the design of thermoelectric modules based on liquid-like materials.

During service, the voltage across liquid-like materials (V_a) is directly related to the ratio of the cross-sectional areas of the p- and n-legs (A_p/A_n) . If the liquid-like material is p-type, the larger A_p/A_n will lead to a smaller V_a and consequently better stability during service.

In this study, scientists developed two kinds of TE modules based on liquid-like materials. They chose Cu₂Se and Cu_{1.97}S for the <u>p-type</u> legs and selected Yb_{0.3}Co₄Sb₁₂-filled skutterudite for the n-type legs. The results showed that the Cu_{1.97}S/Yb_{0.3}Co₄Sb₁₂ TE module is not stable during service, while the Cu₂Se/Yb_{0.3}Co₄Sb₁₂ TE module is quite stable when A_p/A_n is higher than four.

Three-dimensional numerical analysis showed that high energy conversion efficiency requires that A_p/A_n be between two and eight. Thus, A_p/A_n values between four and eight are required to simultaneously maximize conversion efficiency and achieve good stability.

The scientists realized a maximum energy conversion efficiency of 9.1

percent for the $Cu_2Se/Yb_{0.3}Co_4Sb_{12}$ thermoelectric module, a recordhigh energy conversion efficiency among high-temperature thermoelectric modules. The long-term aging test confirmed the good stability of the module.

This strategy can also be used to design new TE modules based on other liquid-like <u>materials</u> such as Ag_9GaSe_6 and Zn_4Sb_3 .

Thermoelectric technology can realize direct <u>conversion</u> between heat and electricity. Due to the advantages of no noise, no moving parts, and high reliability, it has attracted great attention as an alternative way to very efficiently utilize energy.

Provided by Chinese Academy of Sciences

Citation: Efficient, stable thermoelectric module based on high-performance liquid-like materials (2019, May 23) retrieved 27 April 2024 from <u>https://phys.org/news/2019-05-efficient-stable-thermoelectric-module-based.html</u>

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.