Microfluidic chip could reduce radiotherapy side effects

March 12, 2019, The Lead
The microvasculature (blood vessel systems within organs) formed inside the chip. Credit: Joe Vittorio

Organ-on-a-chip technology is being used to develop 3-D models that allow researchers in South Australia to investigate the impact of radiotherapy on the body's tissues.

University of South Australia biomedical engineer Professor Benjamin Thierry is leading a study with researchers from Harvard University using the to test the effects of different levels and types of radiation.

A microfluidic cell culture chip closely mimics the structure and function of small and is contained within a disposable device the size of a glass slide.

To date, scientists have relied on testing radiotherapy on cells in a two-dimensional environment on a slide.

Professor Thierry said the organ-on-a-chip technology could reduce the need for animal studies and irrelevant invitro work, both of which had major limitations.

"An important finding of the study is that endothelial cells grown in the standard 2-D culture are significantly more radiosensitive than cells in the 3-D vascular network. This is significant because we need to balance the effect of radiation on tumour tissues while preserving healthy ones," Prof Thierry said.

The findings, published in Advanced Materials Technologies, will allow researchers to fully investigate how radiation impacts on blood vessels and – soon – all other sensitive organs.

"The human microvasculature (blood vessel systems within organs) is particularly sensitive to radiotherapy and the model used in this study could potentially lead to more effective therapies with fewer side effects for cancer patients," Prof Thierry said.

UniSA bioengineer Dr Chih-Tsung Yang, the co-first author of the study, pictured with the microfluidic cell culture chip in the foreground. Credit: Joe Vittorio

More than half of all receive radiotherapy at least once in the course of their treatment. While it cures many cancers, the side effects can be brutal and sometimes lead to acute organ failure and long-term cardiovascular disease.

Prof Thierry's team, including University of South Australia Future Industries Institute colleague Dr. Chih-Tsung Yang and Ph.D. student Zhaobin Guo, is working in close collaboration with the Royal Adelaide Hospital and Harvard University's Dana-Farber Cancer Institute with the support of the Australian National Fabrication Facility.

"Better understanding the effect of radiotherapy on blood vessels within organs – and more generally on healthy tissues – is important, especially where extremely high doses and types of radiation are used," Dr. Yang said.

The researchers' next step is to develop body-on-chip models that mimic the key organs relevant to a specific cancer type.

The South Australian node of the Australian National Fabrication Facility (ANFF-SA) is one of eight university-based hubs around Australia, which are funded by Commonwealth and State Governments, the CSIRO and participant universities.

Complementing the University of South Australia's Future Industries Institute's research infrastructure at its Mawson Lakes campus, ANFF-SA started out a decade ago specialising in microfluidics.

While this remains a key strength, ANFF-SA's expertise has grown to include lab-on-a-chip technology, advanced sensing, functional coatings and separation science.

Products developed in recent years include a microfluidic device offering gene-modified cell therapy, a non-invasive device to test urine for the presence of bladder cancer cells, a micro needle for an in-home blood-testing platform and a microfluidic chip for high-value mineral extraction.

Explore further: Blood sample breakthrough good news for pregnant women

More information: Zhaobin Guo et al. Validation of a Vasculogenesis Microfluidic Model for Radiobiological Studies of the Human Microvasculature, Advanced Materials Technologies (2019). DOI: 10.1002/admt.201800726

Related Stories

Blood sample breakthrough good news for pregnant women

July 11, 2018

A wide range of fetal genetic abnormalities could soon be detected in early pregnancy thanks to a world-first study led by University of South Australia researchers using lab-on-a-chip, non-invasive technology.

New microfluidics device can detect cancer cells in blood

February 25, 2019

Researchers at the University of Illinois at Chicago and Queensland University of Technology of Australia, have developed a device that can isolate individual cancer cells from patient blood samples. The microfluidic device ...

More realistic and accurate organs-on-chips

March 7, 2018

In a step toward better diagnosis and treatment of digestive conditions, such as inflammatory bowel disease, scientists report in ACS Biomaterials & Engineering that they have developed a first-of-its-kind collagen-based ...

Recommended for you

Physicists discover new class of pentaquarks

March 26, 2019

Tomasz Skwarnicki, professor of physics in the College of Arts and Sciences at Syracuse University, has uncovered new information about a class of particles called pentaquarks. His findings could lead to a new understanding ...

Study finds people who feed birds impact conservation

March 26, 2019

People in many parts of the world feed birds in their backyards, often due to a desire to help wildlife or to connect with nature. In the United States alone, over 57 million households in the feed backyard birds, spending ...

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.