IBM announces that its System Q One quantum computer has reached its 'highest quantum volume to date'

March 5, 2019 by Bob Yirka, Phys.org report
Credit: IBM

IBM has announced at this year's American Physical Society meeting that its System Q One quantum computer has reached its "highest quantum volume to date"—a measure that the computer has doubled in performance in each of the past two years, the company reports.

Quantum computers are, as their name implies, computers based on . Many physicists and scientists believe they will soon outperform traditional computers. Unfortunately, reaching that goal has proven to be a difficult challenge. Several big-name companies have built quantum computers, but none are ready to compete with traditional hardware just yet. These companies have, over time, come to use the number of qubits that a given quantum computer uses as a means of measuring its performance—but most in the field agree that such a number is not really a good way to compare two very different quantum computers.

IBM is one of the big-name companies working to create a truly useful quantum computer, and as part of that effort, has built models that they sell or lease to other companies looking to jump on the quantum bandwagon as soon as they become viable. As part of its announcement, IBM focused specifically on the term "quantum volume"—a metric that has not previously been used in the field. IBM claims that it is a better measure of true performance, and is therefore using the metric to show that the company's System Q One quantum computer advancement has been following Moore's Law.

Credit: IBM

As part of its announcement, IBM published an overview of the results of testing several models of its System Q One machine on its corporate blog. One such metric, notably, was "quantum volume," a metric created by a team at IBM, which is described as accounting for "gate and measurement errors as well as device cross talk and connectivity, and circuit software compiler efficiency." The team that created the metric wrote a paper describing the metric and how it is calculated and uploaded it to the arXiv preprint server last November. In that paper, they noted that the new metric "quantifies the largest random circuit of equal width and depth that the computer successfully implements," and pointed out that it is also strongly tied to error rates.

Credit: IBM

Explore further: IBM says it's reached milestone in quantum computing

More information: www.ibm.com/blogs/research/201 … ower-quantum-device/

Related Stories

First proof of quantum computer advantage

October 18, 2018

For many years, quantum computers were not much more than an idea. Today, companies, governments and intelligence agencies are investing in the development of quantum technology. Robert König, professor for the theory of ...

IBM announces cloud-based quantum computing platform

May 4, 2016

(Tech Xplore)—IBM has announced the development of a quantum computing platform that will allow users to access and program its 5 qubit quantum computer over the Internet. Called the IBM Quantum Experience, it is, the company ...

How to certify a quantum computer

November 5, 2018

Quantum computers are being developed by teams working not only at universities but also at Google, IBM, Microsoft and D-Wave, a start-up company. And things are evolving quickly, says Nicolas Sangouard, SNSF Professor at ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.