Superconduction—why does it have to be so cold?

February 20, 2019, Vienna University of Technology
Karsten Held (l.) and Motoharu Kitatani. Credit: Vienna University of Technology

Currently, there is no precise computation method to describe superconducting materials. TU Wien has now made a major advance towards achieving this goal and, at the same time, has furthered an understanding of why conventional materials only become superconducting at around -200°C

Why does it always have to be so cold? We now know of a whole range of that – under certain conditions – conduct electrical current entirely without resistance. We call this phenomenon superconduction. All these materials do nonetheless experience a common problem: they only become superconducting at extremely low temperatures. The search to find theoretical computational methods to represent and understand this fact has been going on for many years. As yet, no one has fully succeeded in finding the solution. However, TU Wien has now developed a new method that enables a significantly better understanding of superconduction.

Many particles, complex computation

"Actually, it's surprising that superconduction only occurs at extremely low temperatures," says Professor Karsten Held of the Institute of Solid State Physics at TU Wien. "When you consider the energy released by the electrons involved in superconduction, you would actually expect superconduction to be possible at much higher temperatures as well."

In response to this conundrum, he and his team set about looking for a better method of representing superconduction theoretically. Dr. Motoharu Kitatani is the lead author of a new publication that brings forward significant improvements and enables a more in-depth understanding of high-temperature superconductivity.

It is not possible to understand superconduction by imagining the electrons in the material like tiny spheres following a distinct trajectory like balls on a snooker table. The only way you can explain superconduction is by applying the laws of quantum physics. "The problem is that many particles are involved in the phenomenon of superconduction, all at the same time," explains Held. "This makes the computations extremely complex."

The individual electrons in the material cannot be considered as objects that are independent of one another; they need to be treated together. Yet this task is so complex that it would not be possible to solve it accurately, even using the biggest computers in the world. "However, there are various approximation methods that can help us to represent the complex quantum correlations between the electrons," according to Held. One of these is the "dynamical mean-field theory" that is ideal for situations where computing the quantum correlations between the electrons is particularly difficult.

Improved representation of interactions

The research group at TU Wien is now presenting an addition to the existing theory that relies on a new 'Feynman diagram' calculation. Feynman diagrams – devised by Nobel prize winner Richard Feynman – are a way of representing the interactions between particles. All possible interactions – such as when particles collide, but also the emission or absorption of particles – are represented in diagrams and can be used to make very precise calculations.

Feynman developed this method for use in studying individual particles in a vacuum, however it can also be used to depict complex interactions between particles in solid objects. The problem in is that you need to allow for a huge number of Feynman diagrams, because the interaction between the electrons is so intense. "In a method developed by Professor Toschi and myself, we no longer use the Feynman diagrams solely to depict interactions, but also use a complex, time-dependent vertex as a component," explains Held. "This vertex itself consists of an infinite number of Feynman diagrams, but using a clever trick, it can still be used for calculations on a supercomputer."

Painstaking detective work

This has created an extended form of the dynamical mean-field-theory that enables a good approximation of the complex quantum interaction of the to be calculated. "The exciting thing in terms of physics is that we can show it is actually the time dependence of the vertex that means superconduction is only possible at low temperatures." Following a great deal of painstaking detective work, Motoharu Kitatani and Professor Held were even able to identify the orthodox Feynman diagram that shows why only become superconducting at -200°C and not at room temperature.

In conjunction with experiments currently being carried out at the Institute of Solid State Physics in a working group headed up by Professor Barisic, the new method should make a significant contribution to the better understanding of superconduction and so enable the development of even better . Identifying a material that is also superconducting at room temperature would be a huge breakthrough, and would enable a whole series of revolutionary technological innovations.

Explore further: Topological material shows superconductivity—and not just at its surface

More information: Motoharu Kitatani et al. Why the critical temperature of high- Tc cuprate superconductors is so low: The importance of the dynamical vertex structure, Physical Review B (2019). DOI: 10.1103/PhysRevB.99.041115

Related Stories

Description of rotating molecules made easy

December 28, 2018

Feynman diagrams are applied in condensed matter physics. By turning highly complex equations into sets of simple diagrams, the method has established itself as one of the sharpest tools in a theoretical physicist's toolbox. ...

Superconductivity in an alloy with quasicrystal structure

March 27, 2018

Extraordinary things happen at low temperatures. One of the best examples is superconductivity, a phenomenon wherein the electrical resistance of a solid drops to zero below a critical temperature. Known for a century, superconductivity ...

Superconductors: Resistance is futile

January 28, 2019

Every standard cable, every wire, every electronic device has some electric resistance. There are, however, superconducting materials with the ability to conduct electrical current with a resistance of exactly zero – at ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Jeffhans1
5 / 5 (1) Feb 20, 2019
In high school, a classmate asked when I thought we would be able to produce a room temperature stable superconductor. I replied that we could already do so. All we had to do was make a room cryogenic to begin with....

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.