Queensland's floods are so huge the only way to track them is from space

February 5, 2019 by Linlin Ge, The Conversation
Satellite flood mapping along the Queensland coast, compiled using images from the European radar satellite Sentinel-1A. European Space Agency/Smart Spatial Technology Development Laborator (SSTD), UNSW, Author provided

Many parts of Queensland have been declared disaster zones and thousands of residents evacuated due to a 1-in-100-year flood. Townsville is at the epicentre of the "unprecedented" monsoonal downpour that brought more than a year's worth of rain in just a few days, and the emergency is far from over with yet more torrential rain expected.

Such monumental disruption calls for emergency work to safeguard crucial infrastructure such as bridges, dams, motorways, railways, power substations, power lines and telecommunications cables. In turn, that requires accurate, timely mapping of flood waters.

For the first time in Australia, our research team has been monitoring the floods closely using a new technique involving European satellites, which allows us to "see" beneath the and map developments on the ground.

Given that the flooding currently covers a 700km stretch of coast from Cairns to Mackay, it would take days to piece together the big picture of the flood using airborne mapping. What's more, conventional optical imaging satellites are easily "blinded" by cloud cover.

But a radar can fly over the entire state in a matter ofseconds, and an accurate and comprehensive flood map can be produced in less than an hour.

Eyes above the skies

Our new method uses an imaging technology called "" (SAR), which can observe the ground day or night, through cloud cover or smoke. By combining and comparing SAR images, we can determine the progress of an unfolding disaster such as a flood.

In simple terms, if an area is not flooded on the first image but is inundated on the second image, the resulting discrepancy between the two images can help to reveal the flood's extent and identify the advancing flood front.

To automate this process and make it more accurate, we use two pairs of images: a "pre-event pair" taken before the flood, and a "co-event pair" made up of one image before the flood, and another later image during the flooding.

The European satellites have been operated strategically to collect images globally once every 12 days, making it possible for us to test this in Townsville as soon as flooding occurs.

To monitor the current floods in Townsville, we took the pre-event images on January 6 and January 18, 2019. The co-event pair was collected on January 18 and January 30. These sets of images were then used to generate the accurate and detailed flood map shown below.

The image comparisons can all be done algorithmically, without a human having to scrutinise the images themselves. Then we can just look out for image pairs with significant discrepancies, and then concentrate our attention on those.

Our technique potentially avoids the need to monitor floods from airborne reconnaissance planes – a dangerous or even impossible task amid heavy rains, strong wind, thick cloud and lightning.

This timely flood intelligence from satellites can be used to switch off critical infrastructure such as power substations before water reaches them.

Explore further: Powerful new technology maps Townsville floods in near real time

Related Stories

Image: Iraq flood

February 1, 2019

This Copernicus Sentinel-1 image combines two acquisitions over the same area of eastern Iraq, one from 14 November 2018 before heavy rains fell and one from 26 November 2018 after the storms. The image reveals the extent ...

Sentinel-1 aids Balkan flood relief

May 29, 2014

Although not yet operational, the new Sentinel-1A satellite has provided radar data for mapping the floods in Bosnia and Herzegovina.

ESA satellite flood mapping service begins

March 23, 2006

A European Space Agency-supported, satellite-based rapid mapping service began operations Wednesday to support civil defense activities in eastern France.

Satellites used in insurance risk modeling

October 27, 2005

European scientists say one of the worst disasters to hit Europe in the last decade has shown how satellite images can improve insurance risk modeling.

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.