Physicists 'flash-freeze' crystal of 150 ions

February 20, 2019, National Institute of Standards and Technology
Illustration of vibrating beryllium ions (electrically charged atoms) trapped in a crystal formation. NIST researchers cooled and slowed these 'drumhead' vibrations to nearly motionless. Credit: Jordan/NIST

Physicists at the National Institute of Standards and Technology (NIST) have "flash-frozen" a flat crystal of 150 beryllium ions (electrically charged atoms), opening new possibilities for simulating magnetism at the quantum scale and sensing signals from mysterious dark matter.

Many researchers have tried for decades to chill vibrating objects that are large enough to be visible to the naked eye to the point where they have the minimum motion allowed by , the theory that governs the behavior of matter at the atomic scale. The colder the better, because it makes the device more sensitive, more stable and less distorted, and therefore, more useful for practical applications. Until now, however, researchers have only been able to reduce a few types of vibrations.

In the NIST experiment, magnetic and electric fields cooled and trapped the ions so that they formed a disc less than 250 micrometers (millionths of a meter) in diameter. The disc is considered a crystal because the ions are arranged in a regularly repeating pattern.

As described in Physical Review Letters, NIST researchers chilled the crystal in just 200 microseconds (millionths of a second) so that each ion had about one-third of the energy carried by a single phonon, a packet of motional energy in the crystal. This is very close to the amount of energy in the lowest-possible quantum "ground" state for the crystal's so-called "drumhead" vibrations, which are similar to the up-and-down motions of a beating drum.

The researchers cooled and slowed all 150 drumhead vibrations, one for each ion. (The simulation video below shows eight example types of drumhead vibrations.) The work showed that hundreds of ions can be collectively calmed using this technique, a significant advance over the previous demonstration by another group cooling a line of 18 ions.

For vibrations at the frequencies cooled in this demonstration, one-third of the energy carried by a phonon corresponds to 50 microKelvin, or 50 millionths of a degree above absolute zero (minus 459.67 °F or minus 273.15 °C), group leader John Bollinger said. While not a record-breaking temperature, this level is close to the quantum-mechanical ground state for all of the drumhead modes, meaning the thermal motion is small for such a highly confined system, Bollinger noted.

To achieve so much cooling, the researchers aimed two lasers with specific frequencies and power levels at the crystal. The lasers coupled the energy levels of the ions in such a way to induce the ion crystal to lose energy without adding to its motion. For most laser light particles scattered by the crystal, the ions lost motion, cooling the crystal.

The method didn't cool other types of vibrations such as side-to-side of the disc-shaped crystal. But the drumhead motions have the most practical uses. Only the drumhead vibrations are used in quantum simulations and quantum sensors.

Colder drumhead vibrations will make the ion crystal a more realistic simulator of quantum magnetism, which can be hard to calculate on conventional computers. Groundstate cooling should also enable more complicated entangled quantum systems, making possible better measurements for quantum sensing applications.

"A sensing application that we are excited about investigating is the sensing of very weak electric fields," Bollinger said. "With ground state cooling we improve our ability to sense electric fields at a level that enables a search for certain types of dark matter—axions (hypothetical subatomic particles) and hidden photons (as-yet-unseen force carriers)."

Future research will attempt cooling of three-dimensional crystals with much larger numbers of ions.

Explore further: Environmental noise found to enhance the transport of energy across a line of ions

More information: Elena Jordan et al. Near Ground-State Cooling of Two-Dimensional Trapped-Ion Crystals with More than 100 Ions, Physical Review Letters (2019). DOI: 10.1103/PhysRevLett.122.053603

Related Stories

Detecting the birth and death of a phonon

June 5, 2018

Phonons are discrete units of vibrational energy predicted by quantum mechanics that correspond to collective oscillations of atoms inside a molecule or a crystal. When such vibrations are produced by light interacting with ...

Cooling with the coldest matter in the world

November 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree above absolute ...

Active noise control for a quantum drum

November 1, 2018

Researchers at the Schliesser Lab at the Niels Bohr Institute, University of Copenhagen, have demonstrated a new way to address a central problem in quantum physics: at the quantum scale, any measurement disturbs the measured ...

Transferring quantum information using sound

June 6, 2018

Quantum physics has led to new types of sensors, secure data transmission methods and researchers are working toward computers. However, the main obstacle is finding the right way to couple and precisely control a sufficient ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.