Structure of fat-processing enzyme determined

February 26, 2019 by Sarah C.p. Williams, University of California, Los Angeles
Credit: CC0 Public Domain

After decades of work with no success, researchers have determined the high-resolution, three-dimensional structure for lipoprotein lipase, the enzyme that processes fats, or triglycerides, in the bloodstream and releases nutrients for vital tissues such as skeletal muscle and the heart. Triglycerides are the main source of fuel for most cells in the body.

Lipoprotein lipase is responsible for breaking down the in lipoproteins, or fat-rich particles, in the bloodstream. In addition to releasing nutrients, or , for important tissues, lipoprotein lipase plays a key role in generating the cholesterol-rich lipoproteins that promote atherosclerotic lesions within arteries. For more than three decades, researchers around the world have attempted to determine the structure of lipoprotein lipase, with the goal of understanding how the enzyme works and formulating strategies to reduce triglyceride levels in the bloodstream. Determining the structure of lipoprotein lipase requires crystallizing the enzyme. In the case of lipoprotein lipase, obtaining crystals proved to be extremely difficult, most likely because lipoprotein lipase is a highly unstable enzyme.

In the new study, researchers at UCLA and collaborators in Boston and Copenhagen created crystals for lipoprotein lipase. The breakthrough proved to be mixing lipoprotein lipase with another protein, GPIHBP1. GPIHBP1 is a capillary protein that binds lipoprotein lipase and shuttles it to its site of action inside capillaries. When the structure of lipoprotein lipase was stabilized, GPIHBP1 made it possible to obtain useful crystals. By focusing an X-ray beam on a crystal of the lipoprotein lipase–GPIHBP1 complex, the team solved the atomic structure of the complex. The structure revealed precisely how GPIHBP1 binds lipoprotein lipase and provided an explanation for how GPIHBP1 stabilizes the structure and activity of lipoprotein lipase.

Patients with in lipoprotein lipase or GPIHBP1 have extremely high levels of triglycerides in the blood, a consequence of the inability to break down the triglycerides within lipoproteins. Patients with mild to moderately elevated triglyceride levels are at increased risk for atherosclerotic coronary artery disease. Solving the structure of the lipoprotein lipase–GPIHBP1 complex will pave the way for designing strategies to treat elevated triglyceride levels in the bloodstream. This includes the development of highly stable versions of for enzyme replacement therapy.

The study appeared in the journal Proceedings of the National Academy of Sciences.

Explore further: New molecule involved in the body's processing of dietary fat identified

More information: Gabriel Birrane et al. Structure of the lipoprotein lipase–GPIHBP1 complex that mediates plasma triglyceride hydrolysis, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1817984116

Related Stories

Study sheds light on triglyceride metabolism

July 7, 2010

New findings reported in the July issue of Cell Metabolism are offering new leads as to why some people might suffer from high levels of triglycerides. High triglycerides are a risk factor for atherosclerosis and cardiovascular ...

Recommended for you

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.