New approach improving stability and optical properties of perovskite films

February 14, 2019, City University of Hong Kong
a) Device structure and a corresponding cross-sectional TEM image of the multi-layer PeLEDs; b) Schematic flat-band energy diagram of the PeLED; c) Normalized photoluminescence spectrum of the CsPbBr3 film, and electroluminescence spectrum of the PeLED at an applied voltage of 5.5 V Credit: City University of Hong Kong

Metal halide perovskites are regarded as next generation materials for light emitting devices (LEDs). Recent research co-led by a scientist from City University of Hong Kong (CityU) has resulted in a new and efficient fabrication approach to produce all-inorganic perovskite films with better optical properties and stability, enabling the development of high colour-purity and low-cost perovskite LEDs with a high operational lifetime.

Perovskite LEDs (PeLEDs) are an emerging light-emitting technology with advantages of low manufacturing cost, high light quality and energy efficiency. Metal halide (meaning compounds of metals with chlorine, bromine or iodine) perovskites have recently attracted a lot of attention as promising materials for solution-processed LEDs, owing to their excellent , such as saturated emission colors and easy color tunability.

In particular, perovskites based on inorganic cesium cations, namely CsPbX3 (where X can be chlorine, bromine and iodine), exhibit better thermal and chemical stability compared to the organic-inorganic 'hybrid' metal halide perovskites, and may thus provide the base for high-performance LEDs with reasonable operational stability. But the previous inorganic PeLEDs exhibited relatively poor electro-luminescence performance due to their large perovskite grain sizes.

Now a team of researchers at CityU and at Shanghai University in mainland China has developed an efficient fabrication approach to make smooth inorganic perovskite with substantially enhanced performance and stability. Their findings appear in the latest issue (2019, 10, 665) of the scientific journal Nature Communications, titled "Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices."

The team has found that using cesium trifluoroacetate (TFA) as the cesium source in the one-step solution coating, instead of the commonly used cesium bromide (CsBr), enables fast crystallization of small-grained CsPbBr3 perovskite crystals, forming the smooth and pinhole-free perovskite films. This is because the interaction of TFA- anions with Pb2+ cations in the CsPbX3 precursor solution greatly improves the crystallization rate of perovskite films and suppresses surface defects.

As a result, the team has managed to make efficient and stable green PeLEDs based on these films, with a maximum current efficient of 32.0 cd A-1 corresponding to an external quantum efficiency of 10.5% - a level generally considered as satisfactory in existing PeLEDs.

More importantly, the all-inorganic perovskite LEDs based on these films demonstrated a record operational lifetime. They have a half-lifetime of over 250 hours at an initial luminance of 100 cd m-2, which is a 17-fold improvement in operational lifetime compared with CsBr-derived PeLED.

"Our study suggests that the high color-purity and low-cost all-inorganic lead halide films can be developed into highly efficient and stable LEDs via a simple optimization of the grain boundaries," says Andrey Rogach, Chair Professor of Photonics Materials at CityU, who is one of the correspondence authors of the paper.

"I foresee significant application potential of such films, as they are easy to fabricate and can be easily deposited by printing to realise various optoelectronic devices," he adds.

Another correspondence author of the paper is Professor Yang Xuyong from Shanghai University. The first authors are Wang Haoran at Shanghai University and Zhang Xiaoyu, a former visiting research student at CityU, now working as a postdoc at Jilin University.

Explore further: New synthetic method for water-stable perovskites

More information: Haoran Wang et al, Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices, Nature Communications (2019). DOI: 10.1038/s41467-019-08425-5

Related Stories

New synthetic method for water-stable perovskites

January 24, 2019

Researchers in South Korea have presented an easy and cost-effective synthetic method, capable of stabilizing perovskites without addition of foreign coating materials in aqueous media.

Simple fabrication of full-color perovskite LEDs

October 11, 2018

A next-generation optical material based on perovskite nanoparticles can achieve vivid colors even on very large screens. Due to their high color purity and low cost advantages, it has also gained much interests in industry. ...

Researchers chart path to cheaper flexible solar cells

February 7, 2019

There's a lot to like about perovskite-based solar cells. They are simple and cheap to produce, offer flexibility that could unlock a wide new range of installation methods and places, and in recent years have reached energy ...

Self-assembling particles brighten future of LED lighting

January 16, 2017

Just when lighting aficionados were in a dark place, LEDs came to the rescue. Over the past decade, LED technologies—short for light-emitting diode—have swept the lighting industry by offering features such as durability, ...

Recommended for you

Galactic center visualization delivers star power

March 21, 2019

Want to take a trip to the center of the Milky Way? Check out a new immersive, ultra-high-definition visualization. This 360-movie offers an unparalleled opportunity to look around the center of the galaxy, from the vantage ...

Ultra-sharp images make old stars look absolutely marvelous

March 21, 2019

Using high-resolution adaptive optics imaging from the Gemini Observatory, astronomers have uncovered one of the oldest star clusters in the Milky Way Galaxy. The remarkably sharp image looks back into the early history of ...

When more women make decisions, the environment wins

March 21, 2019

When more women are involved in group decisions about land management, the group conserves more—particularly when offered financial incentives to do so, according to a new University of Colorado Boulder study published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.