Unmuting large silent genes lets bacteria produce new molecules, potential drug candidates

January 1, 2019, University of Illinois at Urbana-Champaign
Illinois researchers developed a technique to unmute silent genes in Streptomyces bacteria using decoy DNA fragments to lure away repressors. Pictured, from left: postdoctoral researcher Fang Guo, professor Huimin Zhao and postdoctoral researcher Bin Wang. Credit: L. Brian Stauffer

By enticing away the repressors dampening unexpressed, silent genes in Streptomyces bacteria, researchers at the University of Illinois have unlocked several large gene clusters for new natural products, according to a study published in the journal Nature Chemical Biology.

Since many antibiotics, anti-cancer agents and other drugs have been derived from genes readily expressed in Streptomyces, the researchers hope that unsilencing genes that have not previously been expressed in the lab will yield additional candidates in the search for new antimicrobial drugs, says study leader and chemical and biomolecular engineering professor Huimin Zhao.

"There are so many undiscovered natural products lying unexpressed in genomes. We think of them as the dark matter of the cell," Zhao said. "Anti-microbial resistance has become a global challenge, so clearly there's an urgent need for tools to aid the discovery of novel natural products. In this work, we found new compounds by activating silent gene clusters that have not been explored before."

The researchers previously demonstrated a technique to activate small silent gene clusters using CRISPR technology. However, large silent gene clusters have remained difficult to unmute. Those larger genes are of great interest to Zhao's group, since a number of them have sequences similar to regions that code for existing classes of antibiotics, such as tetracycline.

To unlock the large gene clusters of greatest interest, Zhao's group created clones of the DNA fragments they wanted to express and injected them into the bacteria in hopes of luring away the repressor molecules that were preventing gene expression. They called these clones transcription factor decoys.

"Others have used this similar kind of decoys for therapeutic applications in mammalian cells, but we show here for the first time that it can be used for drug discovery by activating silent genes in bacteria," said Zhao, who is affiliated with the Carle Illinois College of Medicine, the Carl R. Woese Institute for Genomic Biology and the Center for Advanced Bioenergy and Bioproducts Innovation at Illinois.

To prove that the molecules they coded for were being expressed, researchers tested the decoy method first on two known gene clusters that synthesize natural products. Next, they created decoys for eight silent gene clusters that had been previously unexplored. In bacteria injected with the decoys, the targeted silent genes were expressed and the researchers harvested new products.

"We saw that the method works well for these large clusters that are hard to target by other methods," Zhao said. "It also has the advantage that it does not disturb the genome; it's just pulling away the repressors. Then the are expressed naturally from the native DNA."

In the search for drug candidates, each product needs to be isolated and then studied to determine what it does. Of the eight new molecules produced, the researchers purified and determined the structure of two molecules, and described one in detail in the study—a novel type of oxazole, a class of molecules often used in drugs.

The researchers plan next to characterize the rest of the eight compounds and run various assays to find out whether they have any anti-microbial, anti-fungal, anti-cancer or other biological activities.

Zhao's group also plans to apply the decoy technique to explore more silent biosynthetic gene clusters of interest in Streptomyces and in other bacteria and fungi to find more undiscovered natural products. Other research groups are welcome to use the technique for gene clusters they are exploring, Zhao said.

"The principle is the same, assuming that is repressed by transcription factors and we just need to release that expression by using decoy DNA fragments," Zhao said.

Explore further: CRISPR mines bacterial genome for hidden pharmaceutical treasure

More information: Bin Wang et al, Activation of silent biosynthetic gene clusters using transcription factor decoys, Nature Chemical Biology (2018). DOI: 10.1038/s41589-018-0187-0

Related Stories

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
not rated yet Jan 01, 2019
We have Trillions of Microorganisms. So, We can have Zillions of Natural Products from these FACTORIES. It may take decades to get them all into bottles. Next generation of humans will check their utility for betterment of life of progeny. SOONER THE BETTER, though !
Anonym518498
Jan 01, 2019
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.