New tool enables imaging of neural activity with near-infrared light

January 22, 2019 by Katie Willis, University of Alberta
New tool enables imaging of neural activity with near-infrared light
Robert Campbell, professor in the Department of Chemistry, led the team that developed a new detector to visualize the activity in neurons—with applications to help build better, more effective treatments for a number of pressing health conditions. Credit: John Ulan

A new, groundbreaking tool for visualizing neural activity has implications for understanding brain functions and disorders, according to new research by University of Alberta scientists and a team of international collaborators.

The tool, named NIR-GECO1, identifies when an individual neuron is active by monitoring for the presence or absence of calcium ions. "Specifically, it emits near- in the absence of calcium ions. When the concentration of calcium ions increases, it turns dark," explained Robert Campbell, professor in the Department of Chemistry and lead author of the study. "When a neuron 'fires' the concentration of calcium ions temporarily increases inside of the cell. We see this as a dimming of the emitted near-infrared light."

The research builds on previous work in Campbell's lab focused on developing a toolkit for visualizing and manipulating individual neurons. NIR-GECO1 is a protein encoded into DNA, making it most useful for cultured cells in a lab or in model organisms. The technology has the potential to allow scientists to determine the efficacy of therapeutic drugs at the , with implications for building better, more effective treatments for a number of pressing health conditions, including neurodegenerative diseases.

"Tissue is relatively transparent to near-infrared light, so this tool has the potential to enable researchers to visualize neuronal activity deeper within the brain than is currently possible," said Campbell. "This could lead to important insights in the areas of learning and memory, stroke prevention and recovery, and neurodegenerative diseases."

The paper, "A genetically encoded near-infrared fluorescent ion indicator," was published in Nature Methods.

Explore further: Cellular communications visualized with a vibrant color palette

More information: Yong Qian et al, A genetically encoded near-infrared fluorescent calcium ion indicator, Nature Methods (2019). DOI: 10.1038/s41592-018-0294-6

Related Stories

Chemist creates next generation of neuroscience tools

September 11, 2017

UAlberta chemistry professor Robert Campbell is developing new ways to see and manipulate the activity of neurons in the brain, which could revolutionize the way we understand the organ that controls most of the activities ...

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.