Stem cells regulate their fate by altering their stiffness

January 14, 2019, Albert Ludwigs University of Freiburg
Immunofluorescence staining of matrix proteins in engineered cartilage. Credit: Institut für Makromolekulare Chemie

In adults, mesenchymal stems cells (MSCs) are primarily found in bone marrow and they play a vital role in repair of damaged organs. The transformation of a single MSC into complex tissue like cartilage and bone starts with its association with other MSCs in order to form microscopic clusters via a process termed as condensation. While it is known that this condensation step is important for skeletal development the exact role it plays in formation of bone and cartilage is not understood. A team led by Prof. Dr. Prasad Shastri and Dr. Melika Sarem of the Institute for Macromolecular Chemistry at the University of Freiburg present evidence for autonomous control of chondrogenesis in MSCs. These findings are published in the journal Stem Cell Research & Therapy.

They discovered that reducing the number of cells participating in condensation process leads to the activation of an intrinsic differentiation program. This prompts MSCs to become cartilage cells even in absence of chondro-inductive growth factors irrespective of donor age and sex. Sarem and Shastri further identified that two cell-membrane proteins, Caveolin-1 and N-Cadherin are differentially regulated during the condensation step and function as interactive forces like a Yin-Yang of chondrogenic differentiation. "The fact that we need lesser cells to create better quality tissue is extremely exciting as it opens new avenues for stem cell therapies" summarizes Sarem.

In collaboration with Dr. Oliver Otto, at the University of Greifswald, the Freiburg researchers demonstrated that the chondrogenic potential of MSCs correlates with emergence of a stiffer phenotype and increase in cell size. Their findings allude to a hitherto unknown mechanobiology paradigm in MSC differentiation. "Since MSCs harvested from adult are a heterogeneous population of cells and their ability to undergo differentiation into cartilage or varies from donor to donor, our findings have significant implication for MSC-based strategies for engineering cartilage and ," explains Shastri.

Explore further: Nano crystals impact stem cell fate during bone formation

More information: Melika Sarem et al. Cell number in mesenchymal stem cell aggregates dictates cell stiffness and chondrogenesis, Stem Cell Research & Therapy (2019). DOI: 10.1186/s13287-018-1103-y

Related Stories

Nano crystals impact stem cell fate during bone formation

June 19, 2018

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of Biofunctional Macromolecular Chemistry at the Institute for Macromolecular ...

Engineered cartilage template to heal broken bones

March 8, 2018

A team of UConn Health researchers has designed a novel, hybrid hydrogel system to help address some of the challenges in repairing bone in the event of injury. The UConn Health team, led by associate professor of orthopedic ...

Recommended for you

Scientists engineer new CRISPR platform for DNA targeting

January 23, 2019

A team that includes the scientist who first harnessed the revolutionary CRISPR-Cas9 and other systems for genome editing of eukaryotic organisms, including animals and plants, has engineered another CRISPR system, called ...

Human mutation rate has slowed recently

January 23, 2019

Researchers from Aarhus University, Denmark, and Copenhagen Zoo have discovered that the human mutation rate is significantly slower than for our closest primate relatives. This new knowledge may be important for estimates ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.