How sex pheromones diversify: Lessons from yeast

January 22, 2019, Public Library of Science
Schizosaccharomyces pombe
Schizosaccharomyces pombe. Microscopic view of a fission yeast culture. Credit: David O Morgan - The Cell Cycle. Principles of Control.

Many organisms including insects, amphibians and yeasts use sex pheromones for attracting individuals of the opposite sex, but what happens to sex pheromones as new species emerge? New research publishing January 22 in the open-access journal PLOS Biology from Taisuke Seike and Hironori Niki at the National Institute of Genetics, Japan and Chikashi Shimoda at Osaka City University, Japan studies sex pheromones in the fission yeast Schizosaccharomyces pombe, revealing an "asymmetric" pheromone recognition system in which one pheromone operates extremely stringently whereas the other pheromone is free to undergo a certain degree of diversification, perhaps leading to a first step towards speciation.

New species may emerge when two populations can no longer interbreed, and this so-called reproductive isolation, which restricts between populations, is one of the key mechanisms of speciation. Mutational alterations of the pheromone system can affect the ability of males and female to recognize each other, resulting in reproductive isolation; more generally, however, loss of pheromone activity may result in extinction of an organism's lineage. The underlying mechanisms driving the diversification of pheromones within populations are not well understood.

The two sexes ("Plus" and "Minus") of S. pombe each secrete a pheromone ("P-pheromone" and "M-pheromone"), which binds to a corresponding receptor on cells of the opposite sex. By exploring similarities and differences between genes encoding the two pheromones and their receptors in 150 wild S. pombe strains of different geographical origins, the researchers found that the M-pheromone and its receptor are completely invariant, whereas the P-pheromone and its receptor are very diverse in the strains investigated. Interestingly, such asymmetric diversification of the two pheromones is also seen in the closely related fission yeast species S. octosporus.

The authors speculate that the "asymmetric" system in fission yeast might allow flexible adaptation to mutational changes of pheromones while maintaining stringent recognition of mating partners. Indeed, the authors' previous study in the S. pombe demonstrated experimentally that several mutations in a and its corresponding receptor can lead to , which in turn may give rise to a .

"Our findings contribute new insights into the evolutionary mechanisms underlying the diversification of pheromones. Organisms might have such systems for creating new versions of pheromones, allowing them to persist enough long in a population to evolve adaptations of receptors." said Dr. Seike. Before a mutant is completely lost, a second suppressor mutation may occur to recover the first defect. Thus, the coevolution of pheromones/receptors can proceed step-by-step.

Explore further: A moth and its flame: Mate selection found to evolve from response to flower odors

More information: Seike T, Shimoda C, Niki H (2019) Asymmetric diversification of mating pheromones in fission yeast. PLoS Biol 17(1): e3000101. doi.org/10.1371/journal.pbio.3000101

Related Stories

Video: The search for human pheromones

February 10, 2017

Molecules known as pheromones are a potent form of chemical communication in the animal kingdom, able to convey a creature's gender, fertility and more with scent alone. Scientists have sought to determine if humans' body ...

Baby's tears and mom's libido

October 29, 2018

A substance in young mouse tears makes female mice more likely to reject male sexual advances. This research is part of ongoing efforts at the University of Tokyo to understand how animals communicate using chemicals called ...

The search for human pheromones

March 12, 2015

"Do humans have pheromones?" asks a review published in Proceedings of the Royal Society B today. Professor Tristram Wyatt from the University of Oxford says that if we want to find out we need to start from scratch.

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.