Scientists turn carbon emissions into usable energy

January 21, 2019, Ulsan National Institute of Science and Technology
Schematic illustration of Hybrid Na-CO2 System and its reaction mechanism. Credit: UNIST

A recent study affiliated with UNIST has developed a system that produces electricity and hydrogen (H2) while eliminating carbon dioxide (CO2), the main contributor of global warming. This breakthrough has been led by Professor Guntae Kim in the School of Energy and Chemical Engineering at UNIST in collaboration with Professor Jaephil Cho in the Department of Energy Engineering and Professor Meilin Liu in the School of Materials Science and Engineering at Georgia Institute of Technology.

In this work, the research team presented a hybrid Na-CO2 system that can continuously produce electrical and hydrogen through efficient CO2 conversion with stable operation for over 1,000 hours from spontaneous CO2 dissolution in aqueous solution.

"Carbon capture, utilization, and sequestration (CCUS) technologies have recently received a great deal of attention for providing a pathway in dealing with global climate change," says Professor Kim. "The key to that technology is the easy conversion of chemically stable CO2 molecules to other materials." He adds, "Our new system has solved this problem with CO2 dissolution mechanism."

A percentage of human CO2 emissions is absorbed by the ocean and turned into acid. The researchers focused on this phenomenon and came up with the idea of melting CO2 into water to induce an electrochemical reaction. If acidity increases, the number of protons increases, which in turn increases the power to attract electrons. A based on this phenomenon can produce electricity by removing CO2.

Their Hybrid Na-CO2 System, just like a , consists of a cathode (sodium metal), separator (NASICON), and anode (catalyst). Unlike other batteries, catalysts are contained in water and are connected by a lead wire to a cathode. When CO2 is injected into the water, the reaction starts, eliminating CO2 and creating electricity and H2. The conversion efficiency of CO2 is 50 percent.

"This hybrid Na-CO2 cell, which adopts efficient CCUS technologies, not only utilizes CO2 as the resource for generating but also produces a clean energy source, hydrogen," says Jeongwon Kim in the Combined M.S/Ph.D. in Energy Engineering at UNIST, the co-first author for the research.

This system has shown stability to the point of operating for more than 1,000 hours without damage to electrodes. The system can be applied to remove CO2 by inducing voluntary chemical reactions. "This research will lead to more derived research, and will be able to produce H2 and electricity more effectively when electrolytes, separator, system design and electrocatalysts are improved," said Professor Kim.

Explore further: High-performance self-assembled catalyst for SOFC

More information: Changmin Kim et al, Efficient CO2 Utilization via a Hybrid Na-CO2 System Based on CO2 Dissolution, iScience (2018). DOI: 10.1016/j.isci.2018.10.027

Related Stories

Researchers find new ways to harness wasted methane

January 21, 2019

The primary component of natural gas, methane, is itself a potent greenhouse gas. A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has unveiled a high performance catalyst ...

A novel catalyst for high-energy aluminum-air flow batteries

October 15, 2018

A recent study affiliated with UNIST has introduced a novel electric vehicle (EV) battery technology that is more energy efficient than gasoline-powered engines. The new technology involves replacing battery packs instead ...

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.