The new green alternative for drug production

January 9, 2019, University of Göttingen
Structure of the active manganese catalyst in water. Credit: University of Göttingen

Most of the processes for the production of drugs, pesticides and smartphone displays are cost-intensive and generate a large amount of waste. Scientists at the University of Göttingen have now succeeded in developing a resource-saving "green" alternative. The results were published in Nature Catalysis.

The environmentally friendly strategy developed by Professor Lutz Ackermann and his team at the Institute of Organic and Biomolecular Chemistry at the University of Göttingen offers major advantages over existing methods. The naturally occurring non-toxic manganese is employed instead of noble transition metals such as palladium or platinum. Traditionally, , which are highly flammable and toxic, were also used. In contrast, the new approach makes use of environmentally friendly water. This is possible because a manganese-carbon bond is formed in the reaction. This bond is considerably more stable than comparable bonds between carbon and the highly reactive metals lithium or magnesium.

"The new process makes it possible to cleave a single strong carbon-carbon , of which contain a large number, and convert it into the desired product," says Ackermann. In order to achieve the results, experimental laboratory investigations were combined with computer-aided calculations. "This allowed us to gain detailed insight into the exact mode of action of the catalyst. And this in turn enables us to use the process to manufacture other materials."

Explore further: Chemists develop carbon-carbon bond formation without toxic by-products

More information: Hui Wang et al, Versatile and robust C–C activation by chelation-assisted manganese catalysis, Nature Catalysis (2018). DOI: 10.1038/s41929-018-0187-1

Related Stories

Hybrid catalyst with high enantiomer selectivity

August 9, 2018

A group of Japanese researchers has developed a technology to create a hybrid catalyst from simple-structured, commercially available rhodium and organic catalysts, which reduces chemical waste and produces molecules with ...

Creating complex molecules in just a few steps

March 7, 2018

Researchers have found a way to convert single bonds between carbon and hydrogen atoms in a chemical molecule into carbon-carbon bonds. This so-called C-H activation is considered a promising strategy for producing complex ...

Efficient, eco-friendly production of fine chemicals

June 25, 2018

The chemical industry produces not just valuable vitamins, pharmaceuticals, flavours and pesticides, but often a large amount of waste, too. This is particularly true of pharmaceutical and fine-chemical production, where ...

Recommended for you

Researchers report breakthrough in ice-repelling materials

January 15, 2019

Icy weather is blamed for multibillion dollar losses every year in the United States, including delays and damage related to air travel, infrastructure and power generation and transmission facilities. Finding effective, ...

Research finds serious problems with forensic software

January 15, 2019

New research from North Carolina State University and the University of South Florida finds significant flaws in recently released forensic software designed to assess the age of individuals based on their skeletal remains. ...

The secret to Rembrandt's impasto unveiled

January 15, 2019

Impasto is thick paint laid on the canvas in an amount that makes it stand from the surface. The relief of impasto increases the perceptibility of the paint by increasing its light-reflecting textural properties. Scientists ...

Researchers gain control over soft-molecule synthesis

January 14, 2019

By gaining control over shape, size and composition during synthetic molecule assembly, researchers can begin to probe how these factors influence the function of soft materials. Finding these answers could help advance virology, ...

Marine bacterium sheds light on control of toxic metals

January 14, 2019

An ocean-dwelling bacterium has provided fresh insights into how cells protect themselves from the toxic effects of metal ions such as iron and copper, in research led by the University of East Anglia (UEA).

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.