Graphene's spectacular performance in high-speed optical communications

January 11, 2019, CORDIS
Graphene’s spectacular performance in high-speed optical communications
Credit: Daniel Neumaier

Integrating graphene sheets into silicon photonics could form the basis for next-generation data communications. Researchers from the Graphene Flagship initiative have pushed the technology closer to application by demonstrating the world's first high-speed graphene-based data communication at a data rate of 50 Gb/s.

The Graphene Flagship programme aims to act as a catalyst for the development of groundbreaking applications by bringing together academia and industry to take this versatile material into society within 10 years. The importance of integrating graphene in silicon photonics was evident in the joint results produced by the collaboration between Flagship partners AMO GmbH (Germany), the National Inter-University Consortium for Telecommunications (CNIT) (Italy), Ericsson (Sweden), Ghent University (Belgium), the Institute of Photonic Sciences (ICFO) (Spain), imec (Belgium), Nokia (Germany and Italy), the Vienna University of Technology (TU Wien) (Austria) and the University of Cambridge (UK).

One-chip wonder

Silicon has been widely hailed as suitable for monolithic integration for photonics. However, increasing the speed and reducing the power and footprint of key components of silicon photonics technology has not been achieved in a single chip, to date. But graphene—with its capacity for signal emission, modulation and detection—can be the next disruptive technology to achieve this.

"Graphene offers an all-in-one solution for optoelectronic technologies," notes Daniel Neumaier from AMO GmbH, Leader of the Graphene Flagships Division on Electronics and Photonics Integration. Its tuneable optical properties, high electrical mobility, spectrally broadband operation and compatibility with silicon photonics allow monolithic integration of phase and absorption modulators, switches and photodetectors. Integration on a can increase device performance and substantially reduce its footprint and fabrication cost.

Not entirely stuck on silicon

Light modulation and detection are key operations in photonic integrated circuits. Lacking a bandgap, graphene makes broadband light detection with a single material possible as it absorbs uniformly across a broad range in the visible and infrared spectrum. The 2-D material also displays electro-absorption and electro-refraction effects that can be used for ultrafast modulation.

Instead of relying on the expensive silicon-on-insulator wafer technology widely used in , Graphene Flagship researchers proposed a more convenient configuration. This consisted of a pair of single-layer graphene (SLG) layers, a capacitor consisting of an SLG-insulator-SLG stack on top of a passive waveguide. "Such an arrangement boasts several advantages compared to silicon photonic modulators," explains Neumaier. As he further outlines, modulator fabrication does not rely on the waveguide material or the electro-absorption and electro-refraction modulation mechanisms. In addition, replacing germanium photodetectors with SLG removes the need for the fairly costly modules of germanium epitaxy and the accompanying specialised doping processes.

Silicon nitride (SiN) provided a good substrate for synthesising graphene, enabling high carrier mobility, transparency over the visible and infrared regions and perfect compatibility with and complementary metal-oxide semiconductor (CMOS) technologies. As a passive waveguide platform, SiN facilitates laser integration and fibre coupling to the waveguide, thereby enabling the design of miniaturised devices.

A bright future for graphene-based photoelectronics

Tapping into the potential of graphene, researchers successfully demonstrated data communication with graphene photonic components up to a data rate of 50 Gb/s. A graphene-based modulator processed the data on the transmitter side of the network, encoding an electronic data stream to an optical signal. On the receiver side, a graphene-based photodetector converted the optical modulation into an electronic signal. "These results are a promising start for using -based devices in next-generation data communications," Neumaier concludes.

Explore further: High-speed and on-silicon-chip graphene blackbody emitters

Related Stories

High-speed and on-silicon-chip graphene blackbody emitters

April 4, 2018

High-speed light emitters integrated on silicon chips can enable novel architectures for silicon-based optoelectronics. However, compound-semiconductor-based light emitters face major challenges for their integration with ...

Ultra-fast graphene photonics for next generation datacomms

February 27, 2018

On show for the first time at the GSMA Mobile World Congress are two graphene based photonics devices which give a glimpse into the future of data communications. At the Graphene Pavilion, experience the world's first all-graphene ...

Imec demonstrates broadband graphene optical modulator on silicon

December 16, 2014

At this week's IEEE International Electron Devices Meeting (IEDM 2014), nanoelectronics research center imec and its associated lab at Ghent University have demonstrated the industry's first integrated graphene optical electro-absorption ...

Recommended for you

Bright colors produced by laser heating

January 15, 2019

Most of the colors on today's paper and fabric are made using dyes or pigments. But colors can also be produced by modifying a material's surface at the nanoscale, causing the surface to reflect or scatter different frequencies ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.