This galaxy is no match for a hungry cluster

January 24, 2019 by Jim Shelton, Yale University
The spiral galaxy D100, on the far right of this Hubble Space Telescope image, is being stripped of its gas as it plunges toward the center of the giant Coma galaxy cluster. Courtesy of NASA, ESA, M. Sun (University of Alabama), and W. Cramer and J. Kenney (Yale University).

A new study led by Yale University astronomers tells the story of a galaxy that ran out of gas.

It's a story as old as the universe itself: A galaxy is born, brimming with new , its spiral arms stretching and curving. But then it runs into trouble, veering too close to the center of a nearby galaxy . The surrounding cluster begins to siphon off the galaxy's star-making gas, until it loses its spiral arms and becomes a dead relic.

That's what happened to a galaxy called D100 in the massive, Coma galaxy cluster, starting roughly 300 million years ago. Images from NASA's Hubble Space Telescope allowed researchers to see the phenomenon in unprecedented detail.

"This galaxy stands out as a particularly extreme example of processes common in massive clusters, where a galaxy goes from being a healthy spiral full of star formation to a 'red and dead' galaxy. The disappear and the galaxy is left with no gas and only old stars," said William Cramer, a graduate student in Yale's Department of Astronomy who led the new research. "This phenomenon has been known about for several decades, but Hubble provides the best imagery of galaxies undergoing this process."

The process, called "ram pressure stripping," occurs when a galaxy falls toward the dense center of a massive cluster of thousands of galaxies. During its plunge, the galaxy plows through intra-cluster material that is even more dense. This material pushes gas and dust—star-making fuel—away from the galaxy. Once the galaxy loses all of its gas, it meets an untimely death because it can no longer create .

In the Coma cluster, this violent gas-loss process occurs in many galaxies. But D100 is unique, note the scientists. Its long, thin tail, for example, extends nearly 200,000 light years—about the length of two Milky Way galaxies. In addition, the tail is narrow, only 7,000 light years wide.

"The dust tail is remarkably well-defined, straight, and smooth, and has clear edges," said Yale astronomer Jeffrey Kenney, a co-author of the study. "This is a surprise because a tail like this is not seen in most . Most galaxies undergoing this process are more of a mess. The clean edges and filamentary structures of the dust tail suggest that magnetic fields play a prominent role in shaping the tail. Computer simulations show that magnetic fields form filaments in the tail's gas. With no magnetic fields, the gas tail is more clumpy than filamentary."

The Subaru Telescope in Hawaii uncovered the long, glowing hydrogen tail in 2007 during a survey of Coma cluster . But astronomers needed Hubble observations to confirm the hot gas was a signature of star formation. "Without the depth and resolution of Hubble, it's hard to say if the glowing hydrogen gas emission is coming from stars in the tail or if it's just from the gas being heated," Cramer said.

The researchers' main goal was to study in the tail, which was fueled by D100's ongoing gas loss. However, Hubble did not find as many stars as the team expected, based on the amount of glowing hydrogen gas contained in the tail. The brightest clump of young stars in the middle of the tail contains at least 200,000 stars.

The Hubble data shows that the gas-stripping process began on the outskirts of D100 and is moving in towards the center. Based on the images, the gas has been cleared out all the way down to the galaxy's central region.

Another image reveals D100's eventual fate. It's an image of galaxy D99, which underwent the same violent gas loss that D100 is now undergoing. All of D99's gas was siphoned between 500 million and 1 billion years ago, and its spiral structure has mostly faded away.

"D100 will look like D99 in a few hundred million years," Kenney said.

The Coma cluster is located 330 million light years from Earth.

The study appears in The Astrophysical Journal.

Explore further: Hubble takes gigantic image of the Triangulum Galaxy

More information: W. J. Cramer et al. Spectacular Hubble Space Telescope Observations of the Coma Galaxy D100 and Star Formation in Its Ram Pressure–stripped Tail, The Astrophysical Journal (2019). DOI: 10.3847/1538-4357/aaefff ,

Related Stories

Hubble takes gigantic image of the Triangulum Galaxy

January 7, 2019

The NASA/ESA Hubble Space Telescope has captured the most detailed image yet of a close neighbour of the Milky Way—the Triangulum Galaxy, a spiral galaxy located at a distance of only three million light-years. This panoramic ...

Image: Hubble's galaxies with knots, bursts

September 24, 2018

In the northern constellation of Coma Berenices (Berenice's Hair) lies the impressive Coma Cluster— a structure of over a thousand galaxies bound together by gravity. Many of these galaxies are elliptical types, as is ...

Hubble digs into cosmic archaeology

October 30, 2017

This NASA/ESA Hubble Space Telescope image is chock-full of galaxies. Each glowing speck is a different galaxy, except the bright flash in the middle of the image which is actually a star lying within our own galaxy that ...

Image: Hubble catches galaxies swarmed by star clusters

October 2, 2017

In the center of a rich cluster of galaxies located in the direction of the constellation of Coma Berenices, lies a galaxy surrounded by a swarm of star clusters. NGC 4874 is a giant elliptical galaxy, about ten times larger ...

Image: Hubble's treasure chest of galaxies

August 21, 2018

Galaxies abound in this spectacular Hubble image; spiral arms swirl in all colors and orientations, and fuzzy ellipticals can be seen speckled across the frame as softly glowing smudges on the sky. Each visible speck of a ...

Image: Hubble's cosmic atlas

July 28, 2017

This beautiful clump of glowing gas, dark dust and glittering stars is the spiral galaxy NGC 4248, located about 24 million light-years away in the constellation of Canes Venatici (The Hunting Dogs).

Recommended for you

Observation of quantized heating in quantum matter

February 19, 2019

Shaking a physical system typically heats it up, in the sense that the system continuously absorbs energy. When considering a circular shaking pattern, the amount of energy that is absorbed can potentially depend on the orientation ...

Sound waves let quantum systems 'talk' to one another

February 18, 2019

Researchers at the University of Chicago and Argonne National Laboratory have invented an innovative way for different types of quantum technology to "talk" to each other using sound. The study, published Feb. 11 in Nature ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.