One day our sun will solidify into a giant crystal orb

X-rays stream off the sun in this image showing observations from by NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, overlaid on a picture taken by NASA's Solar Dynamics Observatory (SDO). Credit: NASA

Our sun and billions of stars just like it are headed for a strange, cold destiny.

New research suggests that long after our roiling, boiling life-giving star runs out of fuel it will slowly form a cold, dead, super-dense crystal sphere about the size of the Earth that will linger like a translucent tombstone for close to eternity.

"In tens of billions of years from now the universe will be made largely of dense crystal spheres," said Pier-Emmanuel Tremblay, an astrophysicist at the University of Warwick in Coventry, England, who led the work published this week in Nature. "In the future, these objects will be completely dominant."

To come to this conclusion, the researchers used data collected by the European Space Agency's Gaia telescope to analyze the color and brightness of 15,000 white dwarf stars within 300 light-years of Earth.

White dwarf stars are among the oldest objects in the universe, and represent one of the final life phases of stars like the sun.

Currently, our sun is about half way through the main sequence phase, which means it creates by fusing hydrogen into helium in its core.

In about 5 billion to 6 billion years it will run out of hydrogen. Then its core will shrink and the rest of the star will puff up into a relatively short-lived red giant phase which will last about 500 million to a billion years before it contracts once again.

After this contraction the star can still create energy by fusing helium to create carbon and oxygen, Tremblay said.

However, this form of energy generation burns quickly and will only last for a few billion years.

When that process comes to an end, the sun will enter the white dwarf stage, which is essentially a retired star made up primarily of oxygen and carbon gas.

White dwarf stars start off extremely hot, but they no longer generate their own energy. And while they initially radiate enough heat that we can see them in our telescopes, they slowly lose their energy over billions of years.

"It's like taking a hot coal out of a fire and letting it cool off into the night," said JJ Hermes, an astronomer at the University of Boston who worked on the study.

It is not possible to observe crystal structures in white dwarf stars directly, but it is possible to see evidence of the crystallization process, the authors said.

If the stars did not crystallize they would cool at a steady rate, going from blue to orange to red and losing brightness along a smooth slope. But that's not what the Gaia data show.

Instead, the authors found an excess number of white dwarf stars in a certain color and brightness region.

This pileup, or traffic jam in the data suggests that at around the same point in the cooling process, the stars simply stop getting colder.

"We see them sitting there for hundreds of millions and even billions of years when they should be cooling on a much shorter time scale," Hermes said.

The only explanation for this is that these stars have an extra energy source, said Tremblay.

Although the star is no longer generating its own nuclear energy, it turns out that when matter crystallizes from a liquid into a solid it releases energy.

You can see this when water goes from a liquid to a solid in the freezer, Hermes explained. If you were keeping track with a thermometer, you would find that the temperature of water stalls at zero degrees Celsius for a bit—the exact time that the H2O molecules are rearranging themselves into the of ice.

Once the crystal arrangement is in place, the ice will continue to cool at a more or less steady rate until it reaches the same temperature as the environment in the freezer.

The same thing is happening in cores of these white dwarf stars except over a much longer time period, the authors said. As the oxygen and carbon in the star crystallize, they release heat, causing the star to stall its cooling for roughly 2 billion years.

Many scientists thought it was likely that would form crystals as they cooled, but there was disagreement about whether the energy released from the process would be detectable, Tremblay said.

The new finding suggests that not only is that energy detectable, but it is at the upper end of predicted estimates by theoreticians, he said.

But just as the water in your freezer continues to cool after it releases all its latent energy, white dwarfs eventually resume their cooling as well.

And when the process is complete they become what are known as black dwarfs—cold crystal spheres that are not detectable with our telescopes because they don't emit energy.

One day in the far-distant future, Tremblay said, 97 percent of in the universe will meet this fate.

More information: Pier-Emmanuel Tremblay et al, Core crystallization and pile-up in the cooling sequence of evolving white dwarfs, Nature (2019). DOI: 10.1038/s41586-018-0791-x

Journal information: Nature

©2019 Los Angeles Times
Distributed by Tribune Content Agency, LLC.

Citation: One day our sun will solidify into a giant crystal orb (2019, January 14) retrieved 28 May 2023 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Astronomers discover first direct evidence of white dwarf stars solidifying into crystals


Feedback to editors