Cygnus A: Ricocheting black hole jet discovered by Chandra

January 10, 2019, Chandra X-ray Center
X-ray and optical composite. A ricocheting jet blasting from a giant black hole has been captured by Chandra. These images of Cygnus A show X-rays from Chandra and an optical view from Hubble of the galaxies and stars in the same field of view. Chandra's data reveal the presence of a powerful jet of particles and electromagnetic energy that has shot out from the black hole and slammed into a wall of hot gas, then ricocheted to punch a hole in a cloud of energetic particles, before it collides with another part of the gas wall. Credit: X-ray: NASA/CXC/Columbia Univ./A. Johnson et al.; Optical: NASA/STScI

A ricocheting jet blasting from a giant black hole has been captured by NASA's Chandra X-ray Observatory, as reported in our latest press release. In this composite image of Cygnus A, X-rays from Chandra (red, green, and blue that represent low, medium and high energy X-rays) are combined with an optical view from the Hubble Space Telescope of the galaxies and stars in the same field of view. Chandra's data reveal the presence of powerful jets of particles and electromagnetic energy that have shot out from the black hole. The jet on the left has slammed into a wall of hot gas, then ricocheted to punch a hole in a cloud of energetic particles, before it collides with another part of the gas wall.

A labeled version outlines the key features described above. The main figure shows the location of the supermassive black hole, the jets, the point that the jet on the left ricocheted off a wall of intergalactic gas ("hotspot E"), and the point where the jet then struck the intergalactic gas a second time ("hotspot D"). The inset contains a close-up view of the hotspots on the left and the hole punched by the rebounding jet, which surrounds hotspot E. The image in the inset combines X-rays from all three energy ranges to give the greatest sensitivity to show fine structures such as the hole.

The hole is visible because the path of the rebounding jet between hotspots E and D is almost directly along the line of sight to Earth, as shown by the schematic figure depicting the view of Cygnus A from above. A similar rebounding of the jet likely occurred between hotspots A and B but the hole is not visible because the path is not along the Earth's line of sight.

Cygnus A is a large galaxy that sits in the middle of a cluster of galaxies about 760 million light years from Earth. A supermassive black hole at the center of Cygnus A is rapidly growing as it pulls material swirling around it into its gravitational grasp. During this process, some of this material is redirected away from the black hole in the form of narrow beams, or jets. Such jets can significantly affect how the galaxy and its surroundings evolve.

View from above. The hole is visible because the path of the rebounding jet between hotspots E and D is almost directly along the line of sight to Earth, as shown by the schematic figure depicting the view of Cygnus A from above. A similar rebounding of the jet likely occurred between hotspots A and B but the hole is not visible because the path is not along the Earth's line of sight. Credit: NASA/CXC/M.Weiss

In a deep observation that lasted 23 days, scientists used Chandra to create a highly detailed map of both the jets and the intergalactic gas, which they used to track the path of the jets from the black hole. The jet on the left expanded after ricocheting and created a hole in the surrounding cloud of particles that is between 50,000 and 100,000 light years deep and only 26,000 light years wide. For context, the Earth is located about 26,000 away from the center of the Milky Way galaxy.

The scientists are working to determine what forms of energy—kinetic energy, heat or radiation—the jet carries. The composition of the jet and the types of energy determine how the jet behaves when it ricochets, such as the size of the hole it creates. Theoretical models of the jet and its interactions with surrounding gas are needed to make conclusions about the jet's properties.

Our view. The hole is visible because the path of the rebounding jet between hotspots E and D is almost directly along the line of sight to Earth, as shown by the schematic figure depicting the view of Cygnus A from above. A similar rebounding of the jet likely occurred between hotspots A and B but the hole is not visible because the path is not along the Earth's line of sight. Credit: NASA/CXC/M.Weiss

Energy produced by jets from black holes can heat intergalactic gas in galaxy clusters and prevent it from cooling and forming large numbers of stars in a central galaxy like Cygnus A. Thus, studying Cygnus A can tell scientists more about how jets from interact with their surroundings.

These results were presented at the 233rd meeting of the American Astronomical Society meeting in Seattle, WA, in a study led by Amalya Johnson of Columbia University in New York. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

Optical image. A ricocheting jet blasting from a giant black hole has been captured by Chandra. These images of Cygnus A show X-rays from Chandra and an optical view from Hubble of the galaxies and stars in the same field of view. Chandra's data reveal the presence of a powerful jet of particles and electromagnetic energy that has shot out from the black hole and slammed into a wall of hot gas, then ricocheted to punch a hole in a cloud of energetic particles, before it collides with another part of the gas wall. Credit: X-ray: NASA/CXC/Columbia Univ./A. Johnson et al.; Optical: NASA/STScI

Explore further: Image: Black hole bounty captured in the center of the Milky Way

Related Stories

4C+29.30: Black hole powered jets plow into galaxy

May 15, 2013

(Phys.org) —This composite image of a galaxy illustrates how the intense gravity of a supermassive black hole can be tapped to generate immense power. The image contains X-ray data from NASA's Chandra X-ray Observatory ...

Oxymoronic black hole RGG 118 provides clues to growth

August 12, 2015

Astronomers using NASA's Chandra X-ray Observatory and the 6.5-meter Clay Telescope in Chile have identified the smallest supermassive black hole ever detected in the center of a galaxy, as described in our latest press release. ...

Black Hole Pumps Iron

September 14, 2009

(PhysOrg.com) -- This composite image of the Hydra A galaxy cluster shows 10-million- degree gas observed by Chandra in blue and jets of radio emission observed by the Very Large Array in pink. Optical data from the Canada- ...

RX J1532.9+3021: Extreme power of black hole revealed

January 23, 2014

(Phys.org) —Astronomers have used NASA's Chandra X-ray Observatory and a suite of other telescopes to reveal one of the most powerful black holes known. The black hole has created enormous structures in the hot gas surrounding ...

Astronomers pursue renegade supermassive black hole

May 11, 2017

Supermassive holes are generally stationary objects, sitting at the centers of most galaxies. However, using data from NASA's Chandra X-ray Observatory and other telescopes, astronomers recently hunted down what could be ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

NASA instruments image fireball over Bering Sea

March 22, 2019

On Dec. 18, 2018, a large "fireball—the term used for exceptionally bright meteors that are visible over a wide area—exploded about 16 miles (26 kilometers) above the Bering Sea. The explosion unleashed an estimated 173 ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Steelwolf
5 / 5 (2) Jan 10, 2019
On fantastically different scales this would look akin to photons trying to leave atoms in the Early Universe (by BB types) pre-reionization.

Some jets are able to continue for thousands and millions of light years, either singly or in pairs, most we see, however, are either bent by the intergalactic medium, or are stopped, like these are, by the same IGM. Same as it was in early BB Universe at a certain point in it's expansion. We Should be able to extrapolate the age of the Macrocosm in "It's scale" of seconds/minutes/hours etc from IT's scale of Big Bang.

That would give us a better actual working definition of the age/scale of our own universe and how it relates to our own sub-atomic scale.

We are finding that white dwarfs apparently crystallize, is this the basis for electrons in the mega-cosmos, or at least some form of quark? Are gluons a scaled down version of Interplanetary medium plasma-solar wind surrounding our bottom quark star and toplet quark planets?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.