Computational algorithm to reduce electromagnetic noise in electronic circuits developed

January 31, 2019, Osaka University
Examples of the research result. A pulse signal induces a series of pulses on the transmission line (left). Improvement of the transmission line arrangement and lumped circuit connection provides “noise-free” signal transmission (right). Credit: Osaka University

In order to design noiseless electromagnetic (EM) devices, it is necessary to clarify the mechanism behind EM noise and theoretical calculations and computer simulations are performed for prediction assessment of devices. Two researchers at Osaka University developed an algorithm for numerical calculation of EM noise (interference) in electric circuits.

EM is a problem that has proven to be difficult to solve. Caused by interference from transmission lines and connecting parts, various approaches have been taken to reduce it, such as adding filters and/or passive devices to circuits or using the symmetry of the configuration.

The algorithm developed in this study is for computer simulation of in which transmission lines are connected with lumped element models. Usually, the solution of problems along a is performed using , while the solution of problems in a lumped constant circuit uses ordinary differential equations. In order to connect these two different differential equations and solve these problems, the pair of researchers, Prof. Masayuki Abe and Prof. Hiroshi Toki, introduced the incidence matrix found in circuit theory and time domain impedance, the latter of which is a new concept.

Previously, this solution required a method to replace lumped constant circuits with transmission lines, but this new method does not require such a replacement, allowing for more practical calculations. The results of this research were published in Scientific Reports.

Based on the results of calculations using this algorithm, the two researchers demonstrated that EM noise could be reduced by using the symmetric 3-line configuration of the circuit. Their method is for one-dimensional multi-conductor transmission lines, but they have already developed a calculation algorithm in two- and three-dimensional multi-conductor transmission lines (patent pending) as well, making it possible to advance its applied research.

This calculation method can also be developed into a calculation method for the retarding effects of EM noise (and signals), which are difficult to calculate via conventional . Currently, the researchers are developing a computational algorithm for calculating these retarding effects. In addition to analysis of time and frequency domains of EM noise, this algorithm will be used for various applications, such as generation of heat by noise, metamaterials, and antenna analysis.

"Eventually, we aim to develop an 'EM noise-less infrastructure.' In addition to improving device performance, we'd like to realize a society in which people can use high value-added equipment, such as equipment with ultra-low power consumption and ultra-low waste heat," says Prof. Abe. "Specifically, we will theoretically clarify a noiseless structure of electronic and demonstrate that drastic reduction of EM noise can lead to a breakthrough that allows for low power consumption."

Prof. Toki says, "Our goal is to use our method to develop advanced technology into general purpose technology and establish guidelines for developing the concept of noiseless electronic devices into projects with both social and economic impact."

Explore further: Faster computation of electromagnetic interference on an electronic circuit board

More information: Masayuki Abe et al. Theoretical Study of Lumped Parameter Circuits and Multiconductor Transmission Lines for Time-Domain Analysis of Electromagnetic Noise, Scientific Reports (2019). DOI: 10.1038/s41598-018-36383-3

Related Stories

Smooth propagation of spin waves using gold

June 22, 2017

Assistant Professor Taichi Goto at Toyohashi University of Technology elucidated the noise generation mechanism of the spin wave (SW), the wave of a magnetic moment transmitted through magnetic oxide, and established a way ...

Neuron circuit may enable pitch perception applications

August 19, 2014

The first FitzHugh-Nagumo neuron circuit designed to include noise and exhibit the Ghost Stochastic Resonance effect has been presented by researchers from Université de Bourgogne in France. Their circuit operates according ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.