Septin proteins act as cellular police to identify, imprison and kill 'superbug' Shigella

December 13, 2018, London School of Hygiene & Tropical Medicine

Using state-of-the art technologies to image human cells and study infection at the level of a single bacterial cell, the research team, led by the London School of Hygiene & Tropical Medicine, has uncovered the strongest evidence yet that septins take Shigella prisoner.

Crucially, it reveals for the first time that these proteins can detect where bacteria will split for division and prevent it from doing so by forming cage-like structures around the bacteria.

Antimicrobial resistance is one of the biggest threats to global health. As well as the need to develop , such as antibiotics, novel ways to control bacterial infection are vitally important. Shigella is a human gut pathogen, infects more than 150 million people globally and causes up to 500,000 deaths every year. Due to the increasing number of drug resistant strains, Shigella is one of the 'superbugs' deemed a priority by the World Health Organization.

The say that although septins are a powerful, natural mechanism to restrict Shigella, is required to determine how septin biology can be harnessed for therapeutic purposes. It is hoped that these new findings may lead to a novel way to boost the human immune system and treat a wide variety of bacterial infections.

Lead author Professor Serge Mostowy from the London School of Hygiene & Tropical Medicine said: "We are actively working to engineer this discovery for human health application. If we can use drugs to boost septin caging, we have a new way to stop infection."

In 2010, researchers first observed that septin cages can entrap Shigella, opening up the tantalising prospect of a new way to stop the bacteria spreading in the body. However, how cells recognise Shigella for entrapment, and the fate of entrapped bacteria, was mostly unknown.

Study co-author Sina Krokowski said: "For modern medicine, how cells can recognise bacteria is the subject of intense investigation. This information is crucial if septins are ever able to be used as a treatment for humans."

Excitingly, the research team found that the septin cage seems to recognise actively dividing bacteria, whether it's antimicrobial resistant or not. Moreover, using with state of the art cameras, the research team found that once entrapped in a septin 'cage', 93% of bacteria will never divide again because they are targeted to autophagy, a cellular process of 'self eating', providing definitive proof that cages are anti-bacterial.

Professor Mostowy said: "The rise of 'superbugs' is one of the greatest global health challenges we face. New drugs to tackle antimicrobial resistance are crucial but they are costly and all likely to be met with resistance. We must therefore also look at other, novel ways to control .

"By applying cutting edge microscopy techniques, only available in the last few years, to study the cellular immune response to Shigella, we now have clear evidence that septins can be a new 'natural' weapon in the fight against AMR. Remarkably, these proteins act as host cell 'sensors' to recognise actively dividing bacteria, the exact bacterial population that causes disease, for entrapment. In addition to Shigella, this may also apply to a wide variety of invasive bacterial pathogens such as Pseudomonas and Staphylococcus."

The authors acknowledge limitations of the study including the possibility that some have evolved to avoid septin cage entrapment, and the need for in vivo study prior to application in humans.

Explore further: Human cells build protein cages to trap invading Shigella

More information: Sina Krokowski et al, Septins Recognize and Entrap Dividing Bacterial Cells for Delivery to Lysosomes, Cell Host & Microbe (2018). DOI: 10.1016/j.chom.2018.11.005

Related Stories

Human cells build protein cages to trap invading Shigella

December 4, 2011

In research on the never-ending war between pathogen and host, scientists at the Pasteur Institute in Paris have discovered a novel defensive weapon, a cytoskeletal protein called septin, that humans cells deploy to cage ...

Bacterial 'gene swapping' sparks disease outbreaks

April 17, 2018

A new study by scientists at the University of Liverpool documents, for the first time, how the ability of bacteria to swap genetic material with each other can directly affect the emergence and spread of globally important ...

Recommended for you

How our cellular antennas are formed

January 17, 2019

Most of our cells contain an immobile primary cilium, an antenna used to transfer information from the surrounding environment. Some cells also have many mobile cilia that are used to generate movement. The 'skeleton' of ...

Individual lichens can have up to three fungi, study shows

January 17, 2019

Individual lichens may contain up to three different fungi, according to new research from an international team of researchers. This evidence provides new insight into another recent discovery that showed lichen are made ...

Sea slug study illuminates how mitochondria move

January 17, 2019

Your cells have an amazing ability—they can build their own energy factories, called mitochondria. Once built, mitochondria must move where needed in the cell. Defects in mitochondrial transport are a suspected cause of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.