Quantum Maxwell's demon 'teleports' entropy out of a qubit

December 20, 2018, Moscow Institute of Physics and Technology
Extended Maxwell’s demon. Credit: @tsarcyanide/MIPT

Researchers from the Moscow Institute of Physics and Technology, ETH Zurich, and Argonne National Laboratory, U.S, have described an extended quantum Maxwell's demon, a device locally violating the second law of thermodynamics in a system located one to five meters away from the demon. The device could find applications in quantum computers and microscopic refrigerators that cool down tiny objects with pinpoint accuracy. The research was published Dec. 4 in Physical Review B.

The says that in an isolated system, entropy, the degree of disorder or randomness, never decreases.

"Our demon causes a device called a qubit to transition into a more orderly state," explained the study's lead author, Andrey Lebedev of MIPT and ETH Zurich. "Importantly, the demon does not alter the qubit's energy and acts over a distance that is huge for ."

All Maxwell's demons described or created so far by the authors or other researchers have had a very limited range of action—they were situated near the object on which they operated.

Because the demon needs to be "initialized," or prepared, prior to each interaction with the qubit, some energy is inevitably spent at the location of the demon. This means that globally, the second law still holds.

Demonic 'purity'

The study proposes the qubit be implemented as a superconducting artificial atom, a microscopic device like the one the researchers previously proposed for use as a quantum magnetometer. Such a qubit would be made of thin aluminum films deposited on a silicon chip. The reason this system is called an artificial atom is that at temperatures close to absolute zero, it behaves like an atom with two basis : the ground and the .

A qubit can simultaneously exhibit mixed "pure" and "impure" states. If a qubit is in one of the two basis states, but it is not known for sure which, its state is referred to as "impure." If that is the case, a classical probability for finding the artificial atom in one of the two states may be calculated.

However, just like a real atom, the qubit may be in a quantum superposition of the ground and the excited states. A quantum superposition is a special state that can be reduced to neither of the basis states. This so-called pure state, which defies the classical notion of probability, is associated with more order, and therefore less entropy. It can only exist for a fraction of a second before degenerating back into an impure state.

The demon described in the paper is another qubit connected to the first one by a coaxial cable carrying microwave signals. A consequence of the Heisenberg uncertainty principle is that once connected by a transmission line, the qubits start exchanging virtual photons, portions of microwave radiation. This photon exchange enables the qubits to swap their states.

If a pure state is artificially induced in the demon, it can then swap states with the target qubit, endowing it with "purity" in return for an impure state of the same energy. By purifying the target qubit, its entropy is reduced but its energy is not affected. The result is that the demon channels entropy away from a system isolated in terms of energy—namely, the target qubit. This results in the apparent violation of the second law if the target qubit is considered locally.

Quantum nanorefrigerator

Being able to purify a target qubit over a macroscopic distance is important from a practical standpoint. Unlike the impure state, the pure one can be switched into the ground or the excited state in a relatively straightforward and predictable way using an electromagnetic field. This operation may be useful in a quantum computer, whose qubits need to be switched into the ground state upon launch. Doing this from a distance is important, since the presence of a demon close to the quantum computer would affect the latter in adverse ways.

Another possible application of the demon has to do with the following: Switching the target qubit into the pure and subsequently into the ground state makes its immediate environment slightly colder. This turns the proposed system into a nanosized refrigerator capable of cooling parts of molecules with pinpoint accuracy.

"A conventional refrigerator cools its entire volume, while the qubit 'nanofridge' would target a particular spot. This might well be more effective in some cases," explained the paper's co-author Gordey Lesovik, who heads MIPT's Laboratory of the Physics of Quantum Information Technology. "For example, you could implement what's known as algorithmic cooling. This would involve supplying the code of a primary, 'quantum' program with a subprogram designed to target-cool specifically the hottest qubits.

"A further twist is that with any 'heat machine,' you can run it in reverse, turning a heat engine into a refrigerator or vice versa," added the physicist. "This lands us with a highly selective heater, as well. To turn it on, we would switch the target qubit into the excited rather than the ground state, making the qubit's whereabouts hotter."

This cooling or heating cycle could be run repeatedly, since the target qubit retains its pure state for a brief time, after which it enters the impure state, consuming or emitting the thermal energy of the environment. With every iteration, the location of the becomes progressively cooler or warmer, respectively.

Besides the range of the demon, the authors have estimated the maximum temperature of the coaxial cable running between the qubits. Above this temperature, the quantum properties of the system are lost and the demon no longer works. Although the cable temperature may not exceed a few degrees above the absolute zero, this is nevertheless about 100 times hotter than the working temperature of the qubits. This makes it considerably easier to implement the proposed setup experimentally.

The team is already working on implementing the experiment.

Explore further: Maxwell's demon extracts work from quantum measurement

More information: A. V. Lebedev et al. Extended quantum Maxwell demon acting over macroscopic distances, Physical Review B (2018). DOI: 10.1103/PhysRevB.98.214502

Related Stories

Maxwell's demon extracts work from quantum measurement

July 10, 2017

(Phys.org)—Physicists have proposed a new type of Maxwell's demon—the hypothetical agent that extracts work from a system by decreasing the system's entropy—in which the demon can extract work just by making a measurement, ...

Researchers successfully simulate a 64-qubit circuit

June 26, 2018

Quantum computers are based on the principles of quantum mechanics. Compared with classical bits, qubits can be at the superposition between zero and one, so a quantum computer composed of qubits can calculate and store more ...

Physicists read Maxwell's Demon's mind

July 5, 2017

Pioneering research offers a fascinating view into the inner workings of the mind of 'Maxwell's Demon', a famous thought experiment in physics.

Recommended for you

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Dec 20, 2018
The second law actually states that entropy never decreases over time. For very brief periods, by chance, it can decrease -- it is a probabilistic law.
not rated yet Dec 26, 2018
If this works, a Bose Einstein Condensate could be cooled further maybe even reaching absolute zero thus causing a small black hole to form in the timeless cloud.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.