Protein involved in nematode stress response identified

December 13, 2018, University of Illinois at Urbana-Champaign
The free-living nematode, C. elegans, exists in a stress-resistant form called dauer in low-resource or overcrowded conditions. University of Illinois and University of Pennsylvania researchers found the protein responsible for this structural remodeling, DEX-1. The extracellular matrix protein may shed light on metastasis in human cancers and other processes involving stem cells. Credit: Nathan Schroeder, University of Illinois

When humans experience stress, their inner turmoil may not be apparent to an outside observer. But many animals deal with stressful circumstances—overcrowded conditions, not enough food—by completely remodeling their bodies. These stress-induced forms, whether they offer a protective covering or more camouflaged coloration, can better withstand the challenge and help the animal survive until conditions improve.

Until now, it wasn't clear what molecular trigger was pulled to allow this structural remodeling in times of stress. But researchers at the University of Illinois and the University of Pennsylvania have discovered the responsible in the roundworm C. elegans.

"We're using a really simple animal system to understand basic biological questions that have implications not only for nematodes, including important crop parasites, but also for higher animals, including humans," says Nathan Schroeder, assistant professor in the Department of Crop Sciences at U of I, and author of the new study published in Genetics.

When C. elegans larvae are stressed, they stop eating, their development halts, and they enter a stress-resistant stage known as dauer. In this form, their bodies become distinctly thinner and longer and develop an outer cuticle with ridges from tip to tail.

Schroeder and his team were investigating a protein called DEX-1 for an unrelated project when they noticed worms without the protein were "dumpy" in the dauer phase: they remained relatively short and round. Intrigued, the researchers decided to characterize the protein and its function in seam , the cells responsible for dauer remodeling.

"When we disrupted the DEX-1 protein, the seam cells did not remodel during dauer," Schroeder says. "Seam cells have stem cell-like properties. We usually think about as controlling , but we found that these cells are actually regulating their own shape through this protein, and that has an impact on overall body shape in response to stress."

DEX-1 is an example of an extracellular matrix protein, a type that is extruded to form the mortar between cells. These proteins exist in every multicellular organism, not only keeping cells together but also facilitating interaction between cells. Not always in a good way; it turns out many extracellular matrix proteins, including a DEX-1 analogue, are associated with human diseases, such as .

Schroeder says his group is interested in looking more closely at metastasis in cancers due to these proteins, but as a nematologist, he gets more excited about the prospect of understanding the basic biology and genetics of nematodes themselves, particularly parasitic species that affect crops.

"For many parasitic nematodes, when they're ready to enter the infective stage, they have a similar process. Many of the genes regulating the decision to go into or come out of that infective stage also regulate the decision to enter dauer," he says. "This research gives us insight into their biology and how they make these developmental decisions."

Explore further: Survival mode in a tiny worm's brain

More information: Kristen M. Flatt et al, Epidermal Remodeling in Caenorhabditis elegans Dauers Requires the Nidogen Domain Protein DEX-1, Genetics (2018). DOI: 10.1534/genetics.118.301557

Related Stories

Survival mode in a tiny worm's brain

January 23, 2018

Caenorhabditis elegans, or C. elegans, are tiny worms with tiny brains—their whole bodies are the width of a pencil tip and contain only 302 neurons. These nematodes live out their two-week-long lifespans in rotting vegetation, ...

Pheromones enhance sex, slow aging -- in worms

August 7, 2008

(PhysOrg.com) -- People will pay big bucks for pills that promise to enhance sex or slow aging. Now, a Cornell researcher and colleagues have uncovered a class of small molecules in tiny worms that not only attract mates ...

Evading cell death

November 9, 2018

Cancer cells can develop resistance to the treatments designed to eliminate them. Several studies have linked stress granules (SGs), cell organelles that form transiently in response to extracellular stress, to this phenomenon. ...

Cells stressed out? Make mitochondria longer

March 14, 2018

Scientists at The Scripps Research Institute (TSRI) have discovered a new pathway in cells that promotes mitochondrial function during times of stress, a response that can guard against disease as we age.

Recommended for you

Matter waves and quantum splinters

March 25, 2019

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.