Development of MEMS sensor chip equipped with ultra-high quality diamond cantilevers

December 20, 2018, National Institute for Materials Science
Micrographs of the diamond MEMS chip developed through this research and one of the diamond cantilevers integrated into the chip Credit: NIMS

A NIMS-led research group succeeded in developing a high-quality diamond cantilever with among the highest quality (Q) factor values at room temperature ever achieved. The group also succeeded for the first time in the world in developing a single crystal diamond microelectromechanical systems (MEMS) sensor chip that can be actuated and sensed by electrical signals. These achievements may popularize research on diamond MEMS with significantly higher sensitivity and greater reliability than existing silicon MEMS.

In MEMS sensors, microscopic cantilevers (projecting beams fixed at only one end) and are integrated on a single substrate. They have been used in gas sensors, mass analyzers and scanning microscope probes. For practical application in a wider variety of fields, including disaster prevention and medicine, they require greater sensitivity and reliability.

The elastic constant and mechanical constant of diamond are among the highest of any material, making it promising for use in the development of highly reliable and sensitive MEMS sensors. However, three-dimensional microfabrication of diamond is difficult due to its mechanical hardness. The research group developed a "smart cut" fabrication method that enabled microprocessing of diamond using ion beams and succeeded in fabricating a single crystal diamond cantilever in 2010. However, the quality factor of the diamond cantilever was similar to that of existing silicon cantilevers because of the presence of surface defects.

The research group subsequently developed a new technique enabling atomic-scale etching of diamond surfaces. This etching technique allowed the group to remove defects on the bottom surface of the single crystal diamond cantilever fabricated using the smart cut method. The resulting cantilever exhibited Q factor values—a parameter used to measure the sensitivity of a cantilever—greater than one million; among the world's highest. The group then formulated a novel MEMS device concept: simultaneous integration of a cantilever, an electronic circuit that oscillates the cantilever and an electronic circuit that senses the vibration of the . Finally, the group developed a single crystal diamond MEMS chip that can be actuated by and successfully demonstrated its operation for the first time. The chip exhibited very high performance and sensitivity, operating at low voltages and at temperatures as high as 600°C.

These results may expedite research on fundamental technology vital to the practical application of diamond MEMS chips and the development of extremely sensitive, high-speed, compact and reliable capable of distinguishing masses differing by as light as a single molecule.

Explore further: World’s first diamond nanoelectromechanical switch

More information: Haihua Wu et al, Reducing intrinsic energy dissipation in diamond-on-diamond mechanical resonators toward one million quality factor, Physical Review Materials (2018). DOI: 10.1103/PhysRevMaterials.2.090601

Related Stories

Tiny diamond invention could help launch rockets into space

October 25, 2018

Scientists at ANU have invented tiny diamond electronic parts that could outperform and be more durable than today's devices in high-radiation environments such as rocket engines, helping to reach the next frontier in space.

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.