How ice particles promote the formation of radicals

December 7, 2018, Ruhr-Universitaet-Bochum
Karina Morgenstern and Cord Bertram with the experimental setup. Credit: RUB, Marquard

The production of chlorofluorocarbons, which damage the ozone layer, has been banned as far as possible. However, other substances can also tear holes in the ozone layer in combination with ice particles, such as those found in clouds. Researchers at Ruhr-Universität Bochum, the University of Duisburg-Essen and Friedrich-Alexander-Universität Erlangen-Nürnberg have discovered a possible mechanism for this. They describe it in the journal Physical Review Letters on 13 November 2018.

The work was part of a long-standing cooperation between the teams from Bochum, Duisburg-Essen, and Erlangen-Nuremberg led by Professor Karina Morgenstern, Dr. Cord Bertram, Professor Uwe Bovensiepen and Professor Michel Bockstedte, which is currently being continued within the framework of the cluster of excellence Ruhr Explores Solvation, or Resolv for short.

Organic molecules are deposited on ice particles

Chemical processes can significantly influence the weather, the climate and the composition of the atmosphere. Cosmic rays or UV light provide the energy to split chemical compounds. In the case of bromine, chlorine or fluorine compounds, radicals, i.e. particularly reactive molecules, are formed. These attack the ozone molecules and can trigger chain reactions in the . An earlier laboratory study had shown that ice particles with a silver core can promote such reactions. The team investigated the mechanism behind this effect in the current study.

In the laboratory, the scientists produced tiny ice particles and analysed how certain compounds containing chlorine or bromine interacted with them. They condensed the ice particles onto copper. In nature, mineral dust particles, among other things, form condensation nuclei for the ice particles.

Using microscopic and spectroscopic methods, they observed that the molecules preferentially attached themselves to defects in the ice structure. The surrounding water molecules of the ice structure then reoriented themselves and hydrogenated the molecules. This, in turn, made it easier to ionise the molecules in the experiment.

UV radiation generates radicals

The researchers irradiated the ice crystals with the attached molecules using UV light, which excited electrons in the ice particles in the vicinity of the molecules. These excited electrons ionised the chlorine and bromobenzene molecules. Through ionisation, the molecules disintegrated into organic residues and highly reactive chlorine and bromine radicals.

"The mechanism could explain what happens when UV light hits mineral-contaminated ice," says Cord Bertram. "Our results could thus help to understand the fundamental processes behind phenomena such as ozone holes."

Explore further: How a crystal is solvated in water

More information: Philipp Auburger et al. Microscopic Insight into Electron-Induced Dissociation of Aromatic Molecules on Ice, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.121.206001

Related Stories

How a crystal is solvated in water

November 21, 2018

Researchers at Ruhr-Universität Bochum have observed how a molecule from a solid crystal structure is solvated in a liquid solvent at a molecular level for the first time. The process is too fast to decipher at room temperature. ...

Tracking a solvation process step by step

December 21, 2017

Chemists of Ruhr-Universität Bochum have tracked with unprecedented spatial resolution how individual water molecules attach to an organic molecule. They used low-temperature scanning tunneling microscopy to visualize the ...

The interactions of chemical mirror images

October 11, 2018

Chemists from Ruhr-Universität Bochum are hoping to find out how strongly the mirror-image chemical molecules – called chiral compounds – interact with their interaction partners. They are concentrating on halogen bonds ...

Recommended for you

Magic number colloidal clusters

December 14, 2018

Complexity in nature often results from self-assembly, and is considered particularly robust. Compact clusters of elemental particles can be shown to be of practical relevance, and are found in atomic nuclei, nanoparticles ...

Tangled magnetic fields power cosmic particle accelerators

December 13, 2018

Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe. That's the result of a new computational study by researchers from the Department of Energy's ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.