The physics of extracting gas from shale formations

November 30, 2018, Springer

Extracting gas from new sources is vital in order to supplement dwindling conventional supplies. Shale reservoirs host gas trapped in the pores of mudstone, which consists of a mixture of silt mineral particles ranging from 4 to 60 microns in size, and clay elements smaller than 4 microns. Surprisingly, the oil and gas industry still lacks a firm understanding of how the pore space and geological factors affect gas storage and its ability to flow in the shale.

In a study published in EPJ E, Natalia Kovalchuk and Constantinos Hadjistassou from the University of Nicosia, Cyprus, review the current state of knowledge regarding flow processes occurring at scales ranging from the nano- to the microscopic during . This knowledge can help to improve gas recovery and lower shale gas production costs.

Extracting gas from shale has become a popular method in North America and has attracted growing interest in South America and Asia, despite some public opposition. Unlike conventional reservoirs, the pore structures of shale gas reservoirs range from the nanometric to ; most natural gas reservoirs display microscopic or larger scale pores.

In this paper, the authors outline the latest insights into how the pore distribution and geometry of the shale matrix affect the mechanics of the gas transport process during extraction. In turn, they present a model based on a microscopic image obtained via scanning to determine how gas pressure and gas speed vary throughout the shale. The model is in agreement with experimental evidence.

The authors reveal that the orientation, density and magnitude of rock bottlenecks can affect the volume and flow in gas production, due to their impact on the distribution of pressure throughout the reservoir. The findings of their numerical simulation match available theoretical evidence.

Explore further: How fluids flow through shale

More information: Natalia Kovalchuk et al, New insights from shale gas production at the microscopic scale, The European Physical Journal E (2018). DOI: 10.1140/epje/i2018-11741-5

Related Stories

How fluids flow through shale

May 2, 2017

Most of the world's oil and natural gas reserves may be locked up inside the tiny pores comprising shale rock. But current drilling and fracturing methods can't extract this fuel very well, recovering only an estimated 5 ...

New research aims to improve natural gas production

April 27, 2011

Natural gas is an abundant energy resource for the United States, but much of it remains trapped in shale or tight-sand formations. Researchers at Missouri University of Science and Technology hope to develop a way to extract ...

OU researchers developing shale gas reservoir simulator

January 5, 2011

University of Oklahoma researchers are developing a new simulator for shale gas reservoirs that will provide oil and gas companies with an essential tool for managing production and choosing drilling locations to lower costs ...

Can we accurately model fluid flow in shale?

January 4, 2013

(Phys.org)—Given that over 20 trillion cubic meters of natural gas, a third of the United States' total reserves, are thought to be trapped in shale, and given the rush to exploit shale oil and gas resources by Australia, ...

Recommended for you

Magnetoresistance ratio enhancement in Heusler-based alloy

December 18, 2018

Magnetic field sensors can enhance applications that require efficient electric energy management. Improving magnetic field sensors below the picoTesla range could enable a technique to measure brain activity at room temperature ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.