Image: Polar lights on Uranus

November 5, 2018, European Space Agency
Credit: ESA/Hubble & NASA, L. Lamy / Observatoire de Paris

On the first day of the 15th annual European Space Weather Week, this image from the NASA/ESA Hubble Space Telescope fittingly shows a striking occurrence of celestial weather in the outer reaches of the Solar System: an aurora on Uranus.

Auroras, also known as polar lights, are a relatively familiar type of to Earth-based stargazers, but have also been spied on many other in the Solar System.

Views of the Earth's Northern and Southern Lights show glowing sheets and rippling waves of bright painting the sky in striking shades of green and even red, blue, and purple; these breath-taking scenes are created as streams of energetic charged particles hit the upper layers of Earth's atmosphere at altitudes of up to a few hundreds of kilometres, and interact with resident atoms and molecules of mostly oxygen and nitrogen. These emit photons at specific visible wavelengths or colours – green and red for oxygen, blue and purple for nitrogen – and fill the sky with an eerie auroral glow.

Hubble has observed on Uranus on various occasions: in 2011, when the telescope became the first to image the phenomenon from the vicinity of Earth, then again in 2012 and 2014, taking extra data beyond visible light.

By pointing Hubble's ultraviolet eye on Uranus twice during the same month, from 1 to 5 and 22 to 24 November 2014, scientists were able to determine that the planet's glimmering auroras rotate along with the planet. The observations also helped to locate Uranus' magnetic poles, and allowed scientists to track two so-called interplanetary shocks that propagated through the Solar System. These shocks were triggered by two powerful bursts of material flung out by the Sun via the solar wind, an ongoing flow of charged particles constantly emanating from our star, and caused the most intense auroras ever seen on Uranus.

This image, originally published in 2017, shows the auroras as wispy patches of white against the planet's azure blue disc, and combines optical and ultraviolet observations from Hubble with archive data from NASA's Voyager 2 probe. Voyager 2 was the first and only craft to visit the outermost planets in the Solar System; it flew past Uranus in January 1986, and past Neptune in August 1989. These icy planets have not been visited since. NASA and ESA have been studying a possible joint mission that would target the two ice giant planets in order to explore their intriguing role in our planetary system.

Explore further: Hubble spots auroras on Uranus

Related Stories

Hubble spots auroras on Uranus

April 10, 2017

This is a composite image of Uranus by Voyager 2 and two different observations made by Hubble—one for the ring and one for the auroras.

Image: Aurora observed from orbit

August 16, 2018

Ever wondered what auroras look like from space? Astronaut Alexander Gerst, also known as @Astro_Alex, gives us his bird's-eye view from aboard the International Space Station, tweeting that the experience is "[m]ind-blowing, ...

Hubble captures vivid auroras in Jupiter's atmosphere

June 30, 2016

Astronomers are using the NASA/ESA Hubble Space Telescope to study auroras—stunning light shows in a planet's atmosphere—on the poles of the largest planet in the Solar System, Jupiter. This observation programme is supported ...

Image: The Aurora and the Sunrise

April 12, 2018

"Sunrise crashes an aurora party over the southern hemisphere," said astronaut Ricky Arnold of the image he snapped from the International Space Station.

What's it like to see auroras on other planets?

November 10, 2015

Witnessing an aurora first-hand is a truly awe-inspiring experience. The natural beauty of the northern or southern lights captures the public imagination unlike any other aspect of space weather. But auroras aren't unique ...

Recommended for you

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Revealing the rules behind virus scaffold construction

March 19, 2019

A team of researchers including Northwestern Engineering faculty has expanded the understanding of how virus shells self-assemble, an important step toward developing techniques that use viruses as vehicles to deliver targeted ...

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.