Better understanding of hydrogen peroxide regulation can lead to new insights into disease development

November 26, 2018, VIB (the Flanders Institute for Biotechnology)

The team of prof. Joris Messens at the VIB-VUB Center for Structural Biology has provided new insights into the regulation of an important intracellular messenger molecule, hydrogen peroxide (H2O2), whose dysregulation has been linked to the development of several diseases, including cancer.

To fine-tune levels of H2O2, cells can sense changes in the concentration of H2O2 and respond by activating specific DNA regulation mechanisms. In bacteria, a called OxyR functions as such a H2O2-sensor. The exact mechanism of how OxyR senses H2O2 and changes its DNA binding properties, however, has hitherto remained unexplored.

By combining protein X-ray crystal structures with supporting molecular biological and biochemical experiments, Dr. David Young and Dr. Brandán Pedre together with international collaborators and co-workers of the Messens lab have provided new insight into this question. They have uncovered the precise H2O2 binding site and the conformational changes that OxyR uses to bind to DNA and stimulate the regulation of the cellular H2O2 concentration.

"Previously, the H2O2-induced structural change of OxyR has led to the development of fluorescence-based genetically encoded H2O2 sensors, offering a way to visualize compartment-specific endogenous H2O2 in in living cells in various pathological conditions," explains Dr. David Young (VIB-VUB). Brandán Pedre (VIB-VUB) adds: "This new insight in the structural details of the OxyR protein not only clarifies how the cell arms itself against H2O2 changes but will also enable us to create more sensitive and specific OxyR-based fluorescent biosensors. Such sensors will help us to better understand how aberrant H2O2 signaling leads to disease and, in the long run, identify new drug targets."

Explore further: Interfacial engineering core@shell nanoparticles for active and selective direct H2O2 generation

More information: Brandán Pedre et al. Structural snapshots of OxyR reveal the peroxidatic mechanism of H2O2 sensing, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1807954115

Related Stories

Specific oxidation regulates cellular functions

December 18, 2014

For a long time, hydrogen peroxide has been considered as a dangerous metabolite that can damage cells through oxidation. This, however, is not its only role in the cell. Scientists from the German Cancer Research Center ...

Enzymes from fungi simplify chemical synthesis

November 22, 2017

Using natural enzymes obtained from fungi, scientists from TU Delft have potentially made the synthesis of certain pharmaceuticals, cosmetics and agrochemicals much simpler, cheaper and environmentally more benign. They have ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.