How HIV DNA is blocked from entering the cell nucleus

November 29, 2018, Public Library of Science
Antibody staining and light microscopy demonstrate the accumulation and co-localization (yellow) of MX2 (red) and NUP214 (green) at the nuclear envelope. Image provided by Dr Gilberto Betancor; created by the superimposition of two images from Figure 6A Credit: Gilberto Betancor et al. (2018)

Multiple components of the nuclear pore complex and nuclear import machinery enable a protein called human myxovirus resistance 2 (MX2) to inhibit HIV-1 infection, according to a study published November 29 in the open-access journal PLOS Pathogens by Michael Malim of King's College London, and colleagues.

In , a membrane barrier called the separates the nucleus from the cytoplasm. The movement of large molecules through the nuclear envelope and into the is regulated by large protein structures called nuclear pore complexes. To infect cells productively, HIV-1 must traverse the nuclear envelope to enable integration of the viral DNA into the genomic DNA of host cells. MX2, which is localized at the cytoplasmic face of the nuclear envelope, inhibits infection by blocking the nuclear import of HIV-1 DNA and preventing its accumulation within the nucleus. However, the precise mechanism of viral inhibition has not been clear.

In the new study, Malim and colleagues show that MX2 interacts with multiple protein components of the nuclear pore complex, as well as the nuclear transport receptor transportin-1—a component of the nuclear import pathway. The findings suggest that TNPO1 and nucleoporins (particularly NUP214) help position MX2 at the nuclear envelope to promote MX2-mediated restriction of HIV-1. According to the authors, these new insights could lead to the development of more effective therapies for HIV-infected patients.

Explore further: Restricting HIV-1 infection

More information: Dicks MDJ, Betancor G, Jimenez-Guardeño JM, Pessel-Vivares L, Apolonia L, Goujon C, et al. (2018) Multiple components of the nuclear pore complex interact with the amino-terminus of MX2 to facilitate HIV-1 restriction. PLoS Pathog 14(11): e1007408. doi.org/10.1371/journal.ppat.1007408

Related Stories

Restricting HIV-1 infection

September 4, 2017

The HIV-1 capsid protein (CA) interacts with viral factors that support infection and host factors that restrict it. The host protein cyclophilin A (CypA) binds to CA and enhances the action of host restriction factors that ...

Lipid metabolism discovered in cell nucleus

June 22, 2018

The cell nucleus is an organelle, in which the DNA of an organism is protected and duplicated. The nucleus of this organ-like structure in the cell plasma is surrounded by an outer and an inner nuclear envelope, which is ...

Study reveals how HIV enters cell nucleus

June 21, 2016

Loyola University Chicago scientists have solved a mystery that has long baffled HIV researchers: How does HIV manage to enter the nucleus of immune system cells?

Recommended for you

To repair DNA damage, plants need good contractors

December 13, 2018

When a building is damaged, a general contractor often oversees various subcontractors—framers, electricians, plumbers and drywall hangers—to ensure repairs are done in the correct order and on time.

Plants' defense against insects is a bouquet

December 13, 2018

Michigan State University scholar Andrea Glassmire and her colleagues have revealed how the mixture of chemical weapons deployed by plants keeps marauding insects off base better than a one-note defense. This insight goes ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.