New study highlights complexity of warming and melting in Antarctica

November 20, 2018 by Marie Denoia Aronsohn, Columbia University
New study highlights complexity of warming and melting in Antarctica
Running water in Antarctica. Credit: Gisela Winckler/Lamont-Doherty Earth Observatory

In a study released on Nature Climate Change's website today, scientists draw from recent findings to underscore the multifaceted dynamics of surface melting in Antarctica. The study authors come from Columbia University's Lamont-Doherty Earth Observatory, the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder, and Rowan University.

Antarctica is often thought of as a cold, high, and dry place—and these are all certainly true of Earth's largest ice sheet, which currently locks away about 58 meters of sea level rise. However, recent studies indicate that in a warming future, more of the of the Antarctic ice sheet will melt. Whether this new water collects in lakes, moves in rivers or is absorbed in the near surface snow like a sponge, has tremendous consequences for rising sea levels around the globe.

Today, Antarctica loses most of its ice mass by melting bottom-up from the ocean, and from the breaking off of icebergs. But recent research increasingly indicates that it may not always be this way. As continue to rise, Antarctica may progressively face top-down ice loss, too, because of a warming atmosphere. In fact, recent modeling work has shown that it may actually be a warmer atmosphere that drives Antarctica's main contributions to sea level rise over this century. This modeling work has been augmented by observations in recent decades in the Antarctic Peninsula region, where several ice shelves have broken up due to warmer air causing more surface melting. This melting has formed large meltwater lakes that have caused ice shelves to fracture and break up. Once this breakup occurs, ice from inland Antarctica accelerates into the ocean.

However, in our ever-evolving understanding of meltwater production in Antarctica, the authors also demonstrate that a warming atmosphere is but one consideration; local-scale winds and feedbacks can be even more important for driving melting. For example, this warmer atmosphere may lead to more snowfall, which, perhaps counterintuitively, could also suppress melting, while at the same time creating more of a sponge-like firn layer to absorb meltwater.

Understanding what happens to the meltwater after it has formed is a critical issue that needs to be addressed. Science have gained some insight from Greenland, where there's much greater surface melting occurring today. For example, in Greenland, we know that meltwater can seep down through snow and firn into the subsurface, forming vast firn aquifers. If such features begin to form on Antarctica's ice shelves, they could threaten future ice-shelf stability. However, Antarctica's ice shelves are not the only thing that we should be concerned about in the future. If there's sufficient surface melting on Antarctica's grounded ice, some of this water could make it to the ice sheet base and affect the ice's flow into the ocean, as it is already doing under much of the Greenland Ice Sheet.

Ultimately, the authors argue that solving how Antarctica is going to respond to is an increasingly complex task and has created new questions and an urgent need for a concerted, multidisciplinary, and international effort. They write that observations are needed today from the ground and space, and it is imperative that ice sheet and climate models are able to represent the diverse processes affecting melting and hydrology in Antarctica. Because of Antarctica's potential to vastly alter global sea level, these are pressing concerns that require heightened scientific focus.

Explore further: Antarctic melting slows atmospheric warming and speeds sea level rise

More information: Robin E. Bell et al. Antarctic surface hydrology and impacts on ice-sheet mass balance, Nature Climate Change (2018). DOI: 10.1038/s41558-018-0326-3

Related Stories

More ice loss through snowfall on Antarctica

December 12, 2012

Stronger snowfall increases future ice discharge from Antarctica. Global warming leads to more precipitation as warmer air holds more moisture – hence earlier research suggested the Antarctic ice sheet might grow under ...

Greenland and Antarctic ice sheet melting, rate unknown

February 16, 2009

The Greenland and Antarctica ice sheets are melting, but the amounts that will melt and the time it will take are still unknown, according to Richard Alley, Evan Pugh professor of geosciences, Penn State.

Recommended for you

After a reset, Сuriosity is operating normally

February 23, 2019

NASA's Curiosity rover is busy making new discoveries on Mars. The rover has been climbing Mount Sharp since 2014 and recently reached a clay region that may offer new clues about the ancient Martian environment's potential ...

Study: With Twitter, race of the messenger matters

February 23, 2019

When NFL player Colin Kaepernick took a knee during the national anthem to protest police brutality and racial injustice, the ensuing debate took traditional and social media by storm. University of Kansas researchers have ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.