Researchers create most complete high-resolution atomic movie of photosynthesis to date

November 7, 2018, SLAC National Accelerator Laboratory
Using SLAC's X-ray laser, researchers have captured the most complete high-res atomic movie to date of Photosystem II, a key protein complex in plants, algae and cyanobacteria responsible for splitting water and producing the oxygen we breathe. Credit: Gregory Stewart/SLAC National Accelerator Laboratory

Despite its role in shaping life as we know it, many aspects of photosynthesis remain a mystery. An international collaboration between scientists at SLAC National Accelerator Laboratory, Lawrence Berkeley National Laboratory and several other institutions is working to change that. The researchers used SLAC's Linac Coherent Light Source (LCLS) X-ray laser to capture the most complete and highest resolution picture to date of Photosystem II, a key protein complex in plants, algae and cyanobacteria responsible for splitting water and producing the oxygen we breathe. The results were published in Nature today.

Explosion of life

When Earth formed about 4.5 billion years ago, the planet's landscape was almost nothing like what it is today. Junko Yano, one of the authors of the study and a senior scientist at Lawrence Berkeley National Laboratory, describes it as "hellish." Meteors sizzled through a carbon dioxide-rich atmosphere and volcanoes flooded the surface with magmatic seas.

Over the next 2.5 billion years, water vapor accumulating in the air started to rain down and form oceans where the very first life appeared in the form of single-celled organisms. But it wasn't until one of those specks of life mutated and developed the ability to harness light from the sun and turn it into energy, releasing from water in the process, that Earth started to evolve into the planet it is today. This process, oxygenic photosynthesis, is considered one of nature's crown jewels and has remained relatively unchanged in the more than 2 billion years since it emerged.

"This one reaction made us as we are, as the world. Molecule by molecule, the planet was slowly enriched until, about 540 million years ago, it exploded with life," said co-author Uwe Bergmann, a distinguished staff scientist at SLAC. "When it comes to questions about where we come from, this is one of the biggest."

A greener future

Photosystem II is the workhorse responsible for using sunlight to break water down into its atomic components, unlocking hydrogen and oxygen. Until recently, it had only been possible to measure pieces of this process at extremely low temperatures. In a previous paper, the researchers used a new method to observe two steps of this water-splitting cycle at the temperature at which it occurs in nature.

Now the team has imaged all four intermediate states of the process at natural temperature and the finest level of detail yet. They also captured, for the first time, transitional moments between two of the states, giving them a sequence of six images of the process.

The goal of the project, said co-author Jan Kern, a scientist at Berkeley Lab, is to piece together an atomic movie using many frames from the entire process, including the elusive transient state at the end that bonds oxygen atoms from two water molecules to produce oxygen molecules.

"Studying this system gives us an opportunity to see how metals and proteins work together and how light controls such kinds of reactions," said Vittal Yachandra, one of the authors of the study and a senior scientist at Lawrence Berkeley National Laboratory who has been working on Photosystem II for more than 35 years. "In addition to opening a window on the past, a better understanding of Photosystem II could unlock the door to a greener future, providing us with inspiration for artificial photosynthetic systems that produce clean and renewable energy from sunlight and water."

Researchers create most complete high-res atomic movie of photosynthesis to date
In photosystem II, the water-splitting center cycles through four stable states, S0-S3. On a baseball field, S0 would be the start of the game when a batter on home base is ready to hit. S1-S3 would be players waiting on first, second, and third. The center gets bumped up to the next state every time it absorbs a photon of sunlight just like how a player on the field advances one base every time a batter connects with a ball. When the fourth ball is hit, the player slides into home, scoring a run or, in the case of Photosystem II, releasing the oxygen we breathe. Credit: Gregory Stewart/SLAC National Accelerator Laboratory
Sample assembly line

For their experiments, the researchers grow what Kern described as a "thick green slush" of cyanobacteria—the very same ancient organisms that first developed the ability to photosynthesize—in a large vat that is constantly illuminated. They then harvest the cells for their samples.

At LCLS, the samples are zapped with ultrafast pulses of X-rays to collect both X-ray crystallography and spectroscopy data to map how electrons flow in the oxygen-evolving complex of photosystem II. In crystallography, researchers use the way a crystal sample scatters X-rays to map its structure; in spectroscopy, they excite the atoms in a material to uncover information about its chemistry. This approach, combined with a new assembly-line sample transportation system, allowed the researchers to narrow down the proposed mechanisms put forward by the research community over the years.

Mapping the process

Previously, the researchers were able to determine the room temperature structure of two of the states at a resolution of 2.25 angstroms; one angstrom is about the diameter of a hydrogen atom. This allowed them to see the position of the heavy metal atoms, but left some questions about the exact positions of the lighter atoms, like oxygen. In this paper, they were able to improve the resolution even further, to 2 angstroms, which enabled them to start seeing the position of lighter atoms more clearly, as well as draw a more detailed map of the chemical structure of the metal catalytic center in the complex where water is split.

This center, called the oxygen-evolving complex, is a cluster of four manganese atoms and one calcium atom bridged with oxygen atoms. It cycles through the four stable oxidation states, S0-S3, when exposed to sunlight. On a baseball field, S0 would be the start of the game when a player on home base is ready to go to bat. S1-S3 would be players on first, second, and third. Every time a batter connects with a ball, or the complex absorbs a photon of sunlight, the player on the field advances one base. When the fourth ball is hit, the player slides into home, scoring a run or, in the case of Photosystem II, releasing breathable oxygen.

The water oxidizing complex in photosystem II in the last stable state before water oxidation occurs. Credit: Jan Kern, Lawrence Berkeley National Laboratory

The researchers were able to snap action shots of how the structure of the complex transformed at every base, which would not have been possible without their technique. A second set of data allowed them to map the exact position of the system in each image, confirming that they had in fact imaged the states they were aiming for.

Sliding into home

But there are many other things going on throughout this process, as well as moments between states when the player is making a break for the next base, that are a bit harder to catch. One of the most significant aspects of this paper, Yano said, is that they were able to image two moments in between S2 and S3. In upcoming experiments, the researchers hope to use the same technique to image more of these in-between states, including the mad dash for home—the transient state, or S4, where two atoms of oxygen bond together—providing information about the chemistry of the reaction that is vital to mimicking this process in artificial systems.

"The entire cycle takes nearly two milliseconds to complete," Kern said. "Our dream is to capture 50 microsecond steps throughout the full cycle, each of them with the highest resolution possible, to create this atomic movie of the entire process."

Although they still have a way to go, the researchers said that these results provide a path forward, both in unveiling the mysteries of how photosynthesis works, and in offering a blueprint for artificial sources of renewable energy.

"It's been a learning process," said SLAC scientist and co-author Roberto Alonso-Mori. "Over the last seven years we've worked with our collaborators to reinvent key aspects of our techniques. We've been slowly chipping away at this question and these results are a big step forward."

Explore further: New, detailed snapshots capture photosynthesis at room temperature

More information: Jan Kern et al, Structures of the intermediates of Kok's photosynthetic water oxidation clock, Nature (2018). DOI: 10.1038/s41586-018-0681-2

Related Stories

X-ray laser sees photosynthesis in action

February 14, 2013

Opening a new window on the way plants generate the oxygen we breathe, researchers used an X-ray laser at the Department of Energy's (DOE) SLAC National Accelerator Laboratory to simultaneously look at the structure and chemical ...

Postcards from the photosynthetic edge

July 9, 2014

A crucial piece of the puzzle behind nature's ability to split the water molecule during photosynthesis that could help advance the development of artificial photosynthesis for clean, green and renewable energy has been provided ...

Recommended for you

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Designer emulsions

November 15, 2018

ETH material researchers are developing a method with which they can coat droplets with controlled interfacial composition and coverage on demand in an emulsion in order to stabilise them. In doing so they are fulfilling ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

V4Vendicar
not rated yet Nov 08, 2018
I had no idea that photosynthesis looked like a 1978 version of intellivision baseball.
Ojorf
2 / 5 (4) Nov 08, 2018
Yeah, things are so different when you look close enough.

I wonder what the Krebs Cycle looks like?

thingumbobesquire
1 / 5 (4) Nov 08, 2018
"one of those specks of life mutated and developed the ability to harness light from the sun"
This is a very unwarranted assumption that brings in a bias of stochasticisty or randomness as an ontology. Why? Perhaps there was a nested sequence of subsumed development which arose based upon pre-established harmony as adumbrated by Leibniz.
antialias_physorg
5 / 5 (3) Nov 08, 2018
Perhaps there was a nested sequence of subsumed development which arose based upon pre-established harmony as adumbrated by Leibniz.

Do you even read the garbled word salad you write? Or do you just bash your head against a keyboard and hope autocomplete will fill that with intelligence?
torbjorn_b_g_larsson
5 / 5 (1) Nov 11, 2018
"one of those specks of life mutated and developed the ability to harness light from the sun"
This is a very unwarranted assumption


It is an observed result:

"By utilizing protein similarity
networks, connections between the
different metabolic groups can be
represented, providing evidence for
which groups are more closely
associated with one another. Harel
et al. [1] recapitulate the expected
order of relation between these
metabolic groups, placing
cyanobacteria fittingly between
anaerobes and obligate aerobes.

These findings logically make
sense: if cyanobacteria were the
first organisms in an anaerobic world
to evolve oxygenic photosynthesis,
it would be reasonable to suspect
that they would have deep connections
with both the preexisting anaerobes
and the subsequently evolving
aerobes."

[ https://www.cell....49-2.pdf ]

Science does not do "assumptions", 'they are more like suggestions' (constraints).

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.