Opening access to explore the synthetic chemistry of neptunium

November 8, 2018, US Department of Energy
A new, easily prepared starting material (left) containing neptunium (Np3+) can be readily prepared by an electron (e-) transfer to a parent neptunium (Np4+) compound (right). This process avoids the need to use hard-to-obtain neptunium metal and allows access to Np3+ chemistry from readily available sources. Credit: US Department of Energy

Leftovers from nuclear reactors contain the element neptunium. To safely store the waste, scientists need to know more about how to control neptunium's chemistry. Knowing the stability of different oxidation states is central to chemical control. The +3 oxidation state is generally inaccessible in aqueous (water-based) solutions. Researchers devised an easy way to access neptunium in the +3 oxidation state. Using this method, the team discovered new neptunium properties. They also found out how neptunium's stability in this oxidation state compares and contrasts with plutonium.

Neptunium metal is scarce and hard to obtain. Thus, it is difficult to analyze and fully understand, but scientists need to know more as this metal contributes to nuclear waste toxicity. Now, researchers may have a widely accessible to . This route allows a significant expansion in the number of neptunium molecules that can be synthesized and analyzed. This work into neptunium's behavior across the spectrum of its available (which influence its behavior) is long overdue.

Neptunium metal is extremely scarce, limiting its use as an entry route into molecular chemical studies. In contrast, aqueous acidic stock solutions of neptunium are available through dissolution of neptunium oxide, which is commercially available. Using this solution, researchers devised a new, facile synthetic access route to explore air-sensitive, non-aqueous neptunium chemistry in the +3 oxidation state. Specifically, they've demonstrated that a previously developed starting material in the +4 can be reduced to neptunium(III) to afford a structurally characterized starting material of known molecular formula that can be isolated (as opposed to current in situ routes for which the exact nature of the starting material is not known). This new method helps provide a widely accessible entry point to neptunium(III) chemistry for any approved radiological laboratory. Synthesizing neptunium lets scientists elucidate details about the reduction-oxidation chemistry, bonding motifs, and electronic structure properties. Early studies using neptunium produced via this new synthetic route also note some key differences in reduction-oxidation stability in tetrahydrofuran between neptunium and plutonium. Notably, the scientists found that while neptunium(IV) is stable in tetrahydrofuran, plutonium(IV) is not and forms a mixed valent plutonium(III)/(IV) salt. The scientists conclude that this work might lead to the same level of advances as researchers saw early in 2000 when they developed a similar precursor for uranium.

Explore further: Encouraging minerals to capture troubling radionuclides

More information: Scott A. Pattenaude et al. Non-aqueous neptunium and plutonium redox behaviour in THF – access to a rare Np(iii) synthetic precursor, Chemical Communications (2018). DOI: 10.1039/c8cc02611d

Related Stories

Encouraging minerals to capture troubling radionuclides

May 8, 2015

Associated with contamination in certain spots around the world, pentavalent neptunium does not always behave the same as its stand-in when moving through the soil, according to scientists at University of Notre Dame and ...

ORNL achieves milestone with plutonium-238 sample

December 22, 2015

With the production of 50 grams of plutonium-238, researchers at the Department of Energy's Oak Ridge National Laboratory have restored a U.S. capability dormant for nearly 30 years and set the course to provide power for ...

Making fuel for exploring space

September 9, 2015

Since its 1977 launch, NASA's Voyager 1 spacecraft has travelled farther than any other piece of human technology. It is also the only human-made object to have entered interstellar space.

Recommended for you

New targets in the battle against antibiotic resistance

November 16, 2018

Bacteria are increasingly resistant to available antibiotics. A team of chemists from the Technical University of Munich (TUM) have now identified important enzymes in the metabolism of staphylococci. Blocking these enzymes ...

AI heralds new frontiers for predicting enzyme activity

November 16, 2018

Researchers from the Departments of Chemistry and Engineering Science at the University of Oxford have found a general way of predicting enzyme activity. Enzymes are the protein catalysts that perform most of the key functions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.