Scientists discover new properties of uranium compounds

October 16, 2018, Moscow Institute of Physics and Technology
Illustration. Uranium compounds. Credit: Lion_on_helium/MIPT

Scientists from Russia, China and the United States predicted and have now experimentally identified new uranium hydrides, predicting superconductivity for some of them. The results of their study were published in Science Advances.

The phenomenon of was discovered in 1911 by a group of scientists led by Dutch physicist Heike Kamerlingh Onnes. Superconductivity means complete disappearance of electrical resistance in a material when it is cooled down to a specific , forcing out the magnetic field from the material. At the start, superconductivity was discovered in a few base metals such as aluminum and mercury at temperatures of several degrees above absolute zero, which is -273° C. Of particular interest to scientists are the so-called high-temperature superconductors that exhibit superconductivity at less extreme temperatures. The highest temperature superconductors operate at -183° C, and, therefore require constant cooling. In 2015, a rare sulfur (H3S) set a new high-temperature superconductivity record of -70 °C , although at pressures as high as 1,500,000 atm.

A group of physicists led by Professor Artem R. Oganov predicted that much lower pressures of about 50,000 atmospheres can produce 14 new uranium hydrides, of which only one, UH3, has been known to date. They include compounds rich in hydrogens, such as UH7 and UH8, that the scientists also predicted to be superconducting. Many of these compounds were then obtained in the experiments conducted by the teams of Professor Alexander Goncharov at the U.S. Carnegie Institution of Washington (USA) and the Institute of Solid State Physics of the Chinese Academy of Sciences. The calculations suggest that the highest-temperature superconductor is UH7, which displays superconducting capability at -219° C – a temperature level that can be increased further by doping.

"After H3S was discovered, scientists started eagerly searching for superconducting hydrides in other non-metals, such as selenium, phosphorus, etc. Our study showed that metal hydrides hold as much potential as non-metals in terms of high-temperature superconductivity," says the main author of the study Ivan Kruglov, a researcher in Computational Materials Discovery Laboratory at MIPT.

"The two highlights of our results are that high pressure produces an amazingly rich collection of hydrides, most of which do not fit into classical chemistry, and that these hydrides can actually be obtained and become superconducting at very low pressures, perhaps even at atmospheric ," says Artem Oganov.

Explore further: Scientists discover a link between superconductivity and the periodic table

More information: Ivan A. Kruglov et al. Uranium polyhydrides at moderate pressures: Prediction, synthesis, and expected superconductivity, Science Advances (2018). DOI: 10.1126/sciadv.aat9776

Related Stories

Key compound for high-temperature superconductivity found

June 16, 2016

A research group in Japan found a new compound H5S2 that shows a new superconductivity phase on computer simulation. Further theoretical and experimental research based on H5S2 predicted by this group will lead to the clarification ...

Superconducting hydrogen?

January 25, 2010

Physicists have long wondered whether hydrogen, the most abundant element in the universe, could be transformed into a metal and possibly even a superconductor -- the elusive state in which electrons can flow without resistance. ...

Recommended for you

Scientists produce 3-D chemical maps of single bacteria

November 16, 2018

Scientists at the National Synchrotron Light Source II (NSLS-II)—a U.S. Department of Energy (DOE) Office of Science User Facility at DOE's Brookhaven National Laboratory—have used ultrabright x-rays to image single bacteria ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.