How scientists are fighting infection-causing biofilms

October 16, 2018 by Nicholas Fitzkee, The Conversation
An artist depiction of a biofilm harboring antibiotic-resistant rod-shaped and spherical bacteria. Credit: Kateryna Kon/

The surfaces people interact with every day may seem rather mundane, but at the molecular scale, there is more activity than meets the eye.

Every we touch has its own unique chemical properties. It's because of these properties that some materials stick to surfaces, while others slide off. For a person, a sticky surface may be a minor annoyance, but for a bacterial cell, surface attachment can be a matter of life and death. Bacteria have evolved their own surfaces to be sticky, like Velcro.

When bacteria colonize a surface, they create a community called a biofilm, which can be a source of infection on or implants. Growing concerns over these infections has led a number of researchers to develop materials to block these sometimes dangerous films.

As biophysical chemists, my research group and I are trying to understand the molecular forces that allow biological molecules – like those on bacteria – to attach to surfaces during the earliest phases of . By understanding this early attachment stage, we can reduce the risks that a biofilm will form on implanted medical devices and pose a threat to humans.

Bacterial colonies

Staphylococcus aureus biofilm on the surface of a catheter. Credit: Rodney M. Donlan, Janice Carr /CDC

Biofilms are densely packed communities of bacteria or other microorganisms living on a surface. Like a city, growing within a biofilm has certain advantages. For example, it provides structural support, like the floors of a high rise, and microbes can share nutrients. Compared to free-floating bacteria, bacteria in a biofilm are shielded, allowing them to evade our immune system and resist antibiotics.

When biofilms form on medical devices or implants, they can serve as a persistent source of hard-to-treat infections. These cost not only billions of dollars to treat, but claim thousands of lives each year in the U.S. alone.

Scientists are trying to understand how biofilms form and how to prevent them. Molecular biologists are working out how bacterial DNA encodes for the machinery that allows to attach to surfaces and one another. Microbiologists and medicinal chemists are looking for drugs that can penetrate and disrupt biofilms. And biophysical chemists like myself are trying to sleuth out the molecular interactions that make these biofilms challenging to prevent.

Surface complexity

Staphylococcus aureus and S. epidermidis are two bacterial species that normally pose little problem for our bodies. However, when a staphylococcal biofilm forms on the surface of a medical implant like an artificial hip, these cells can cause disease. Staphylococcal biofilms are held together by sugars or polysaccharides, proteins and nucleic acids, the molecular building blocks of all living organisms. These components enable the bacterial cells to stick not only to each other, but also to natural and implanted surfaces in the body – like a heart valve.

Biofilms pervade all elements of our lives. For example the plaque that forms on your teeth is a biofilm that shelters bacteria. If the plaque isn’t removed, the tissue around the tooth will become inflamed. Credit: Nita_Nita/

The surfaces of medical devices are complex, especially once they have been exposed to the body. Human blood proteins rapidly coat the surface of medical implants, altering the character as both the patient and the device age. When a bacterial cell attaches to one of these surfaces, the components of the cell interact with the surface of the medical implant, forming a complex network of interactions. In our research, we are investigating the bacterial surface proteins that are involved in surface attachment.

Studying these interactions is challenging. Typically, chemistry experiments are carried out in solution, but biofilm experiments must be done on a surface. Detecting the molecules at the surface is a challenge. That's because there are fewer of those molecules compared to the overall volume of the material, just as the skin of the tomato is tiny fraction of the mass of the entire tomato.

Introducing the nanoscale

To overcome this limitation, we are investigating how proteins present on the bacterial surface interact with nanoparticle surfaces. Specifically, we are using nanoparticles designed to mimic the surface of medical devices, and we are targeting proteins involved in staphylococcal infections, a major source of hospital related illness.

Nanoparticles have a diameter much smaller than a bacterial cell. But while a typical cell would dwarf a nanoparticle, the nanoparticle is still much bigger than the molecules on the surface of a cell. By using many nanoparticles it is easier to observe how the bacterium and particle interact and observe the bacterial molecules involved in biofilm formation.

Randika Perera places a nanoparticle sample into an NMR spectrometer, one of the instruments used to study protein-surface interactions. Credit: Sarah Tewolde, MSU Office of Public Affairs, CC BY-SA

Specifically, we are trying to understand the structure and orientation of proteins on different types of surfaces. While we are not the first or the only group to be interested in this topic, our work has begun to reveal the molecular details of how proteins interact with nanoparticle surfaces.

We can probe how tightly the bacteria are clinging to a surface – and we can examine how molecules compete for the same surface. For example, given a collection of bacterial proteins, which of these will ultimately attach to the surface of a medical implant?

As we discover the answers to these questions we will be able to identify the important elements involved in early formation. This will be useful for scientists attempting to inhibit those interactions therapeutically, or those seeking to design new biofilm-resistant surfaces.

Explore further: Researchers discover how fatal biofilms form

Related Stories

Researchers discover how fatal biofilms form

October 5, 2018

By severely curtailing the effects of antibiotics, the formation of organized communities of bacterial cells known as biofilms can be deadly during surgeries and in urinary tract infections. Yale researchers have just come ...

Bacteria harness the lotus effect to protect themselves

May 16, 2017

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is often very difficult, in part because they are extremely water-repellent. ...

Strategies to decrease bacterial colonization

September 14, 2015

Among the bacterial infections that are most difficult to treat, chronic infections associated with bacterial biofilms are one of the most hazardous. Bacterial biofilms are densely packed communities of microbial cells surrounded ...

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.