The K-core as a predictor of structural collapse in mutualistic ecosystems

October 25, 2018, City College of New York
Credit: City College of New York

A network metric called the K-core could predict structural collapse in mutualistic ecosystems, according to research by physicists at The City College of New York. The K-core appears able to forecast which species is likely to face extinction first, by global shocks such as climate change, and when an ecosystem could collapse due to external forces.

Led by Flaviano Morone and Hernán A. Makse, the physicists from CCNY's Division of Science used state of the art theory to predict the tipping point of an ecosystem under severe external shocks like a global increase of temperature. They determined that a network metric termed the K-core of the network can predict the terrifying tipping point of climate Armageddon.

The idea applies to any network—from interacting in , like plant-pollinators or predator-prey—to financial markets where brokers interact in a financial network to determine the prices of stocks and products.

In all these networks a hierarchical structure emerges: each species in the ecosystem belong to a given shell in the network: the so called K-shells. In the periphery of the network is where the commensalists live. These are species that mainly receive the benefits from the core of the network but give nothing back (not to be confused with parasites which benefit from but at the same time harm the network core).

"Amazingly, these peripheral shells are highly populated, indeed, there are many commensalist species in most ecosystems and markets," noted Makse. "These species are predicted to go extinct first and much before the entire ecosystem collapses."

Fortunately, the CCNY theory provides that can be monitored to predict this collapse well in advance. Indeed, monitoring the health of the vital inner K-core of the network is the clear marker to anticipate the ecosystem collapse.

"The theory has enormous implications for not only monitoring ecosystem's health but also financial markets," said Makse.

The study, whose other co-author is research associate Gino Del Ferraro, appears in the current issue of Nature Physics.

Explore further: Team breaks down social networking behavior

More information: Flaviano Morone et al, The k-core as a predictor of structural collapse in mutualistic ecosystems, Nature Physics (2018). DOI: 10.1038/s41567-018-0304-8

Related Stories

Team breaks down social networking behavior

May 16, 2017

New big-data analytics by a City College of New York-led team suggests that both an individual's economic status and how they are likely to react to issues and policies can be inferred by their position in social networks. ...

Long-term changes crucial in charting future of ecosystems

July 19, 2018

Changes in ecosystems that happen over years can often go unnoticed. That is why long-term research is important in restoring and managing the Florida Everglades and other vulnerable ecosystems, according to a new Florida ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.