Researchers discover drug that could combat brain cell death in those with Alzheimer's disease

October 23, 2018 by Melinda Smith, University of California, Los Angeles
Diagram of the brain of a person with Alzheimer's Disease. Credit: Wikipedia/public domain.

One of the hallmark traits of Alzheimer's disease, a debilitating disorder marked by memory deficits and general cognitive decline, is the accumulation in the brain of a protein called b-amyloid. These proteins form "plaques" and bind to unique proteins on the surface of brain cells called receptors, causing widespread cell death.

Now, UCLA researchers have discovered a drug that blocks b-amyloid plaques from attaching to cells, preventing the extensive cell death. The study was published in the journal Nature Chemistry.

Dr. Lin Jiang, assistant professor of neurology, working with David Eisenberg, a professor of chemistry and biochemistry and of biological chemistry at UCLA, identified the plaque binding site of b-amyloid to its receptor by determining the three-dimensional structure. Knowledge of this interaction is a critical first step toward finding a drug to prevent the interaction between the toxic proteins and brain cells. Jiang and his team then used computer software to assist them in the drug selection process.

"We were searching for a molecule that could block the receptor like a shield, preventing b-amyloid from binding to and killing brain cells," Jiang said.

In order to find molecular candidates to block the b-amyloid/brain cell interaction, Jiang and colleagues searched a library containing more than 32,000 molecules. This list contained drugs that are approved for human use, are currently in clinical trial, or are naturally occurring. This meant that many characteristics of the drug candidates were already known and they were safe for human use.

From this list of molecules, one drug, ALI6, showed promising results in cell-based experiments.

Jiang and his team cultured mouse and exposed them to the toxic b-amyloid proteins, then treated some with ALI6 and compared levels of cell death between groups. ALI6 treatment almost completely prevented the caused by b-amyloid, suggesting that the drug could eventually be explored to treat Alzheimer's disease.

ALI6 is a promising candidate. Not only is it non-toxic but it can also move from the bloodstream to the brain, a critical trait for any aimed at treating central nervous system disorders such as Alzheimer's disease. In addition, ALI6 offers a distinct advantage over other treatments.

"Currently, many drugs are aimed at preventing the b-amyloid proteins from accumulating and forming into plaques because that is the dangerous form of the ," Jiang said. "However, when a person is diagnosed with Alzheimer's, many of the b-amyloid plaques have already formed, so the time window for treatment is already closing."

Alzheimer's disease is the sixth-leading cause of death in the United States, with an estimated 5.5 million people currently living with the disease.

The findings of this study would need to be confirmed in further tests in animals before human studies could begin.

Explore further: Researchers identify new potential biotherapy for Alzheimer's disease

More information: Qin Cao et al. Inhibiting amyloid-β cytotoxicity through its interaction with the cell surface receptor LilrB2 by structure-based design, Nature Chemistry (2018). DOI: 10.1038/s41557-018-0147-z

Related Stories

Can nanotechnology help treat Alzheimer's?

June 19, 2018

Alzheimer's disease (AD) is the most common form of dementia. It takes a devastating toll on patients and family members, who are usually the caregivers. Current drugs only treat symptoms of AD, not its causes.

Recommended for you

New targets in the battle against antibiotic resistance

November 16, 2018

Bacteria are increasingly resistant to available antibiotics. A team of chemists from the Technical University of Munich (TUM) have now identified important enzymes in the metabolism of staphylococci. Blocking these enzymes ...

AI heralds new frontiers for predicting enzyme activity

November 16, 2018

Researchers from the Departments of Chemistry and Engineering Science at the University of Oxford have found a general way of predicting enzyme activity. Enzymes are the protein catalysts that perform most of the key functions ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.