A curious branch of plankton evolution

October 17, 2018, Cell Press
Credit: CC0 Public Domain

Planktonic foraminifera (forams) - tiny, shelled organisms that float in the sea—left behind one of the most complete fossil records of evolutionary history in deep sea deposits. Consequently, evolutionists have a relatively sturdy grasp on when and how new lineages arose and developed their own unique features. However, a study publishing October 17 in the journal iScience reveals that one foram lineage evolved much more rapidly than everyone predicted, and researchers are looking beyond Darwin's original theories of gradual evolution to understand why.

"It was an exciting moment. What our study and many others are starting to agree on is that of forams is not necessarily gradual, as Darwin and more recent scientists thought," says first author Russell Bicknell, a palaeontologist at the University of New England's Palaeoscience Research Centre in Australia. "Life can exist for long periods of time exhibiting only minor changes followed by rapid, punctuated shifts."

Bicknell's team, made up of researchers from Australia, New Zealand, and the United States, measured the size and shape of one lineage of forams, called Truncorotalia, using 1,459 fossils from 5.9 and 4.5 million years ago. Using these measurements and time series analyses, they found that the shape of Truncorotalia's shell rapidly morphed 5.1 million years ago. At that time, oceans were cooling and flooding the earth.

"The abrupt change in the shape of Truncorotalia's shell shows that foram lineages can evolve rapidly, explosively, and dramatically," says Bicknell. "That points to more complex evolutionary dynamics than previously thought and justifies a re-evaluation of the evolutionary dynamics of other foram lineages."

The researchers think either of two post-Darwinian theories could describe the rapid changes they observed: punctuated equilibrium and quantum evolution. Punctuated equilibrium describes short bursts and subsequent steady periods of morphological change within a lineage. The theory of quantum evolution describes broader, rapid splits into new families, orders, and classes. If the theory fits, the researchers have potentially observed at a species level for the first time. In either case, the researchers believe previous theories of in foram lineages need reassessment.

Although the researchers' analyses were limited to a specific window of history, the tools they used can be applied widely to various moderately complete fossil records. They hope that more evolutionists will adopt these tools and continue to challenge standard theories on the foram's evolution.

"Evolution is so much more complicated than we think," says Bicknell. "How, when, and why evolutionary changes occur constantly surprise us. It is one of the reasons working in evolution is so much fun."

Explore further: Plankton fossils tell tale of evolution and extinction

More information: "Evolutionary transition in the late Neogene planktonic foraminiferal genus Truncorotalia associated with the Miocene/Pliocene boundary." iScience (2018). https://www.cell.com/iscience/fulltext/S2589-0042(18)30148-2 DOI: 10.1016/j.isci.2018.09.013

Related Stories

Evolutionary origins of animal biodiversity

September 3, 2018

A new study by an international team of researchers, led by scientists from the University of Bristol, has revealed the origins and evolution of animal body plans.

Distant fish relatives share looks

June 15, 2017

James Cook University scientists have found evidence that even distantly related Australian fish species have evolved to look and act like each other, which confirms a central tenet of evolutionary theory.

Recommended for you

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

The friendly extortioner takes it all

February 15, 2019

Cooperating with other people makes many things easier. However, competition is also a characteristic aspect of our society. In their struggle for contracts and positions, people have to be more successful than their competitors ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.