
 

How big data is changing science

October 2 2018, by Tom Chivers

"This is when I start feeling my age," says Anne Corcoran. She's a
scientist at the Babraham Institute, a human biology research centre in
Cambridge, UK. Corcoran leads a group that looks at how our genomes
– the DNA coiled in almost every cell in our bodies – relate to our
immune systems, and specifically to the antibodies we make to defend
against infection.

She is, in her own words, an "old-school biologist," brought up on the
skills of pipettes and Petri dishes and protective goggles, the science of
experiments with glassware on benches – what's known as "wet lab"
work. "I knew what a gene looked like on a gel," she says, thinking back
to her early career.

These days that skill set is not enough. "When I started hiring Ph.D.
students 15 years ago, they were entirely wet lab," Corcoran says. "Now
when we recruit them, the first thing we look for is if they can cope with
complex bioinformatic analysis." To be a biologist, nowadays, you need
to be a statistician, or even a programmer. You need to be able to work
with algorithms.

An algorithm, essentially, is a set of instructions – a series of predefined
steps. A recipe could be seen as an algorithm, although a more obvious
example is a computer program. You take your input (ingredients,
numbers, or anything), run it through the algorithm's steps – which could
be as simple as "add one to each number," or as complex as Google's
search algorithm – and it provides an output: a cake, search results, or
perhaps an Excel spreadsheet.
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Researchers like Corcoran need to use algorithms because, in the 17
years since she became a group leader, biology has changed. And the
thing that has changed it is the vast – the overwhelmingly, dizzyingly vast
– flood of data generated by new biomedical techniques, especially next-
generation sequencing.

Not long ago, sequencing an entire genome – determining the order of
all 3 billion pairs of DNA letters in the helix – took years. The Human
Genome Project, the first completed sequence of an entire human
genome, took around 13 years from conception to its completion in
2003, and cost more than £2 billion. Today, next-generation sequencing
can do the same thing in 24 hours for not much more than a thousand
pounds.

This has completely changed how scientists work. It's not just that they
get their hands dirty less often, nor simply that the required skills have
changed. It's that the whole process of science – how you come by an
idea and test it – has been upended.

This has left a lot of senior scientists needing to understand and
supervise techniques that didn't exist when they trained. It's left
universities playing catch-up, with many degrees not teaching the skills
that modern biologists need. But above all, it's led to ground-breaking
scientific discoveries – breakthroughs that simply wouldn't have been
possible 20 or even 10 years ago.

A 10-minute drive from Babraham, in a village called Hinxton, there's
another major life-sciences centre, the Wellcome Sanger Institute. It's 25
years old this week, and the rapidly moving history of genomics is
written in its very architecture.

"I did my postdoc at the Sanger," says Moritz Gerstung, now a research
group leader at the European Bioinformatics Institute next door. He

2/13

https://phys.org/tags/data/
https://phys.org/tags/next-generation+sequencing/
https://phys.org/tags/next-generation+sequencing/


 

chuckles at the memory. "You can almost sense when the building was
conceived," he says. "There's so much space for laboratory work, and not
so much for where scientists can sit and analyse data on a computer."

This is true everywhere, says Gil McVean, a professor of statistical
genetics at the University of Oxford's Big Data Institute. Genomic
research has become something done mainly on a laptop, not a
workbench. "If you look at any 15-year-old research lab, they're 90 per
cent wet lab," he says. "And if you go into one, almost all the people are
sitting at computers. If you were to build a biomedical research centre
today, you'd build it 10 per cent wet lab and 90 per cent computing."

But that's not the only change. "One of the big changes in science," says
McVean, "has been the move away from a very focused, targeted,
hypothesis-driven approach, the "I've got this idea, I design the
experiment, I run the experiment, and decide whether I was right or
wrong' model."

It used to be that you had to have some plausible idea about why a gene
might do something – that you could imagine some sensible-sounding
biochemical pathway which could link the gene to a disease or trait. The
time it took to sequence genes and the limited computing power
available meant you had to be quite sure you were going to find
something before you dedicated all that expensive lab and analysis time.

Now you just collect a lot of data and let the data decide what the
hypothesis should be, says McVean. If you look at 10,000 genomes of
people with a disease and 10,000 without, you can use an algorithm to
compare them, find the differences and then work out which genes are
linked to the disease, without having to think in advance about which
ones they might be.

This approach is known as a genome-wide association study, a common
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form of analysis in the data-driven era. It's a fairly simple idea. You take
the genomes of a large number of people, sequence them, and then use
an algorithm to compare all of the DNA – not just the 24,000 or so
genes, which make up just 1–2 per cent of the genome, but also all of the
still-somewhat-mysterious non-coding DNA too. The algorithm can be
quite simple: for instance, comparing how frequently a certain DNA
variant appears in people with a certain trait or condition and people
without it. If the variant appears alongside a trait or condition
significantly more often than you'd expect by chance, then the algorithm
flags it up as a possible cause.

Where it gets difficult is that diseases are almost all complex, and have
tens or sometimes hundreds of genes or sections of non-coding DNA
involved. This quickly leads to the need for complicated
multidimensional analysis, and while the maths involved isn't new, the
sheer scale of the task means that algorithms are essential. Often they
can be comparing tens or hundreds of parameters at a time.

It's a bit like the Google search algorithm. The process it uses to rank
each web page isn't that complex – for instance, measuring how
frequently your search terms appear on a page, then where on the page
they appear, then how many links there are to that page, and so on. But it
combines hundreds of these measures and applies them to billions of
web pages simultaneously. It would be impossible for a human to do.

The algorithmic approach has brought great dividends. Gerstung's field,
the genomics of cancer, has perhaps had the most exciting
developments, for instance in relation to leukaemia.

This devastating and often fatal disease can – in some cases – be
successfully treated with a full bone-marrow transplant. But that is a
major procedure whose complications can sometimes be fatal
themselves. You only want to give it to patients with the most deadly
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forms of leukaemia.

Predicting which leukaemias will be the most deadly, though, is
enormously difficult. The symptoms are complex and don't always tell
you enough about the prognosis.

So what Gerstung's team did was sequence the genomes of 1,500
people's cancers to find the DNA mutations driving them, and then see
which mutations correlated with which outcomes. There were 5,000
different mutations among the patients, and around 1,000 different
combinations, which the team divided up into 11 categories of greater or
lesser risk. "It enables clinicians to make much more focused decisions,"
Gerstung says.

The influence of the data-driven approach extends much further.
Sequencing the genomes of tumours has caused a "mind change" in our
approach to cancer in general, says Edd James, a professor of cancer
immunology at the University of Southampton. "We're now much more
appreciative that a cancer isn't just a mass of copied cells."

A single cancer may contain dozens of different kinds of cell, each with
different combinations of DNA mutations and each vulnerable to
different drugs. So sequencing allows clinicians to better target drugs at
the patients – and tumours – upon which they will work. "Before, people
were treated as members of populations: "X per cent of people given this
treatment will do well,"" says James. "But with this information, you can
understand whether [individually] they're going to get the benefit."

As well as spotting differences, gene sequencing has revealed
unexpected similarities between cancers too. Historically, says James,
we've defined cancers by their anatomical site: as lung cancers, liver
cancers, head-and-neck cancers and so on. "But using next-generation
sequencing, you can see that there are cancers in different sites that
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share more in common with each other than with cancers in the same
site. It's made us realise that some drugs that work for, say, breast cancer
might work on others," he says.

Gerstung backs this up: "From a genetic perspective, there's substantial
overlap between cancers from different anatomical sites. One even finds
BRCA1 [a gene heavily involved in breast cancer] in some prostate
cancers."

This is going to become increasingly important. The US Food and Drug
Administration has recently licensed a cancer drug – pembrolizumab –
for use in any cancer that shows signs of mismatch-repair deficiency, a
form of DNA repair error. This is the beginning of drugs being licensed
on the basis of a cancer's genetics rather than location.

And it's all because of the constant, gushing flow of data.

"We got so good at producing data," says Nicole Wheeler, a data
scientist at the Sanger Institute who looks at the genomes of pathogenic
bacteria, "that we ended up with too much of it." McVean agrees. "In
Moore's Law, the computing power you have doubles every 18 months,"
he says. "The growth of biomedical data capture – through sequencing
genomes, but also through medical imaging or digital pathology – is
much faster than that. We're super-Moore's-Law-ing in biomedical
data."

It became completely impossible, in the early years of this century, for
biological scientists to check their data themselves. And this meant that
biologists had to recruit, or become, data scientists.

"We reached a bottleneck a few years ago," says Anne Corcoran. "We
had lots of data, but we didn't know what to do with it. So algorithms
had to be invented on the fly, to deal with the data and maximise it," she
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continues. "When you're looking at single genes, or a few, you can do it
manually, but when you're looking at the expression of 20,000 genes,
you can't even do the statistics by yourself."

Biologists – many of whom grew up, as Corcoran did, working on
benches with glassware, not desks and laptops – have had to learn to use
these algorithms. "I think senior scientists are often intimidated by it,"
she says, "and more reliant on their junior colleagues than they probably
should be, or would like to admit that they are."

She's evolved a "working knowledge" of how these algorithms function,
but admits that "it's a slightly vulnerable period, where the people at the
top don't have the skills to check the work of the people beneath them."

Wolf Reik, one of Corcoran's colleagues at the Babraham Institute, who
runs a research team looking at epigenetics, agrees. Older scientists have
a completely different mindset, he says. "It's quite funny – my staff in
lab meetings think in terms of what the genome as a whole does. But I
think about single genes and generalise from them – that's how I learned
to think."

It's important for people in his position, he says, to understand junior
scientists' work, and "most importantly develop an intuition about how to
use the tools… because ultimately I put my name to the work."

The younger scientists, on the other hand, have grown up with data.
Some of them have come from that background – Gerstung did a physics
undergraduate degree – although that's true of some group leaders as
well, such as McVean. But others who came through a more biological
route have ended up talking in terms of coding. "I did biology as an
undergrad, that's my domain knowledge," says Na Cai, a postdoctoral
researcher at the Sanger Institute who studies how genotypes relate to
various human traits.
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"Now I'm doing statistical analysis every day. It's been like learning
another language, or several," she says. "I had to switch my brain from
thinking in terms of biochemical pathways and flowcharts to a more
structured kind of thinking in terms of code."

The senior scientists she works with have all been "quite good at keeping
up with the latest developments," she says. "They might not be able to
write the code, but they understand what the analysis does."

Wheeler, a colleague of Cai's, also came through the biology route and
ended up coding. "I don't have a traditional software-engineering
background," she says. "I learned to code on the side, during my Ph.D.
[My coding] isn't the most efficient or glamorous, but it's about seeing
what you have to do computationally and making it happen."

In response to these needs, undergraduate degrees have been changing in
the last few years. Newcastle University, for instance, now has a
bioinformatics module in its biology undergraduate course, and
Reading's final-year research projects involve computational biology,
although the earlier optional computing modules have a low take-up, so
students in their final year are learning the skills last-minute. Imperial
College London, which already has bioinformatics courses, is planning
to add programming for first- and second-years. "I think there's a
recognition that biology involves more data than we used to have," says
Wheeler, "so people need to have the skills to process it."

But the change is slow, and sometimes opposed by students, not all of
whom got into biology to code. "I'd say some undergrad courses are
catching up," says Corcoran. "But in general they have not, as
exemplified by the proliferation of post-degree Master's courses
teaching these skills."

The change is necessary, though. Even the most wet-lab-oriented
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scientists interviewed said they spend less than 50 per cent of their time
doing experiments; some said it was as little as 10 per cent or even, in
Cai's case, none at all since she has become a full-time bioinformatician.

The shift towards being data-driven, says Wheeler, can be seen as a
move from science that's hypothesis-testing to one that's hypothesis-
generating. One scientist, who preferred not to put their name to the
concern, worried that it had reduced the creativity in science, but
according to Wheeler that's not the case. "It's moved the creativity
around," she says. "In some ways there's more room for creativity. You
can really try out some crazy ideas at relatively low cost."

This has other advantages. "You can become attached to hypotheses,"
says Matt Bawn, a bioinformatician at the Earlham Institute, a
computational biology research centre in Norfolk, UK. "It's better to be
a disinterested observer with no preconceptions, to look at the blank
canvas and let the picture emerge."

But the greatest benefit is that data-driven studies are throwing up
fascinating new findings all the time, in complex areas that were
previously impossible to study.

Stefan Schoenfelder, another researcher at the Babraham Institute,
studies the 3-D shapes of chromosomes and how they affect gene
expression. When the Human Genome Project was completed, it was
discovered that there were far fewer genes than previously expected –
about 24,000, roughly a quarter of what scientists thought was the
minimum. The rest of the DNA didn't code for proteins at all.

What has since been realised is that part of what those non-coding areas
do is regulate the expression of the genes: they turn them on in some
cells, off in others. And part of how they do that is by folding themselves
into different shapes in different cells.

9/13



 

Chromosomes are usually depicted as X-shaped. But that's only when a
cell is dividing. The rest of the time, the two metres of DNA inside
almost every cell is coiled up in a complex tangle. So a length of DNA
can be located a vast distance away from a gene on the chromosome but
still be able to regulate it because in practice the two have close physical
contact, says Schoenfelder. "That's why it's important to study this in
3-D context: if you just look at the sequences and assume they will
regulate the gene next door, that's often incorrect.

On top of this, genomes fold very differently, Schoenfelder says. "The
same genome in a T cell will have a different conformation to in a liver
cell or in a brain cell, and that's linked to different genes being expressed
and the cells acquiring different functions."

Working out the 3-D shape in each context is incredibly difficult. It
involves sequencing cell types and seeing how they differ from other cell
types, as well as which bits of DNA are interacting in that context. But
the DNA first has to be treated using a complex technique known as
cross-linking and ligation in order to allow the sequencing to see which
bits are near each other. If two distant points are found together, it might
be that they have been folded that way in order for one to affect the
other. But – much more often – it's just the product of random jiggling.

Finding the real correlations among the noise requires looking at billions
of data points and seeing which links keep coming up slightly more often
than others. It's then that the algorithms really come into play. Once you
know which bits of the chromosome are regularly in contact with which
other bits, you can use other algorithms to build 3-D models based on
those points of contact.

"This whole field is only about 15 years old," says Schoenfelder. Before
that, he says, "I didn't think of the genome's shape at all, I just thought of
it as a ball of spaghetti crushed into the nucleus. I thought it was just a

10/13



 

logistical problem, stuffing it into a nucleus that's maybe 5 microns
across.

"What's blown me away is the fine level of regulation that exists, despite
the extreme compaction, that still allows for this fine-tuning." The 3-D
shapes of chromosomes, and which regulatory elements interact with
which genes on that shape, will be a large part of the story of how the
200 cell types in the human body arise.

Meanwhile, McVean says that genomic research has forced clinicians to
reclassify the disease multiple sclerosis entirely. "We've found more than
250 bits of the genome which light up in terms of risk for the disease,"
he says. "That's let us make quite strong statements about the risk for the
individual. But it's also allowed us to see overlaps with diseases like
rheumatoid arthritis: some of the genes that raise your risk of MS
decrease your risk of arthritis.

"So we've learned it's an autoimmune disease, even though it presents as
a neurodegenerative disease," says McVean. "There are four or five
companies with new therapeutic programmes coming out of this."

And Wolf Reik at the Babraham Institute has a thrilling, almost science-
fiction story to tell. His work is in the field of epigenetics, looking at
how the chemical environment of a cell affects the expression of genes;
he sequences RNA, the messenger molecule that allows DNA to be read
and proteins made, to see how it differs from cell to cell. His group is
especially interested in ageing.

Five years ago, it was discovered – and Reik's work has since confirmed
– that there is an ageing clock in all our cells. It's called DNA
methylation. There are four letters in the DNA alphabet: C (cytosine), A
(adenine), G (guanine) and T (thymine). As we get older, more and more
of the Cs on our DNA gain a little chemical marker called a methyl
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group. To read this clock, the work is simple – just counting the methyl
groups up – but, again, the sheer number of data points returned is so
enormous that they absolutely have to be counted by algorithm.

"Reading that clock, we can predict your age, and my age, to within
three years," says Reik. "Which is surprisingly accurate: the most
accurate biomarker of ageing that we have."

All of which is very interesting, of course: it's "either a readout of an
underlying ageing process, or our programmed life expectancy." But
Reik says the implication is that we could interrupt it: "I'm sure there
will be drugs and small molecules that can slow this ageing clock down.

It may be too much to hope that big data will help us all live for ever.
But every scientist I spoke to agreed that the rise of algorithm-led, data-
intensive genomic research has transformed the life sciences. It has left
senior scientists sometimes unsure what their junior colleagues are
doing, and left modern research centres with too much laboratory and
not enough space for a laptop. The pace of change can be "disorienting,"
says Schoenfelder.

"Life is a lot more complex now," he says. "The skill set I had when I did
my Ph.D., only 13 years ago, is absolutely not sufficient to keep up with
today's science." But this change has brought an optimism back into
genomic research. When the Human Genome Project neared
completion, people were excited, believing that many diseases would fall
quickly as their genetic components were revealed. But most of them
turned out to be complex, polygenic, impossible to understand by
looking at single genes. Now, though, it is possible to look at those
diseases through the power of next-generation sequencing and tools that
can sift the data it provides.

"Now when I run an experiment, I get 100 million, 200 million data
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points back," says Schoenfelder. "I didn't think that was possible in my
lifetime, but it's happened over the course of a few years. We can
address questions that were completely off-limits 10 years ago. It's been
an extraordinary revolution."

This article first appeared on Mosaic and is republished here under a
Creative Commons licence.
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