

Can your actions really save the planet? 'Planetary accounting' has the answer

October 25 2018, by Peter Newman And Kate Meyer

Credit: AI-generated image (disclaimer)

The climate is changing before our eyes. News articles about imminent species extinctions have become the norm. Images of oceans full of plastic are littering social media. These issues are made even more daunting by the fact that they are literally global in scale.

In the face of these global environmental crises it can be hard to know where to start to help change the state of our planet. But in a paper <u>published in the journal Sustainable Earth</u>, we set out how to translate many of our global environmental issues into action at a more manageable level.

Our approach aims to chop global problems into digestible chunks that you – as an individual, a chief executive, a city councillor, or a national committee member – can tackle.

We call it "planetary accounting," because it is about creating a series of environmental "budgets" that will stop us overshooting the planet's natural boundaries. From that, we can then calculate everyone's fair share, and hopefully in the process make it easier to visualise which individual, corporate or community actions will have a real environmental impact.

The <u>planetary boundaries</u>, developed in 2009, are a set of non-negotiable global limits for factors such as temperature, water use, species extinctions and other environmental variables. These aim to quantify how far we can push the planet before threatening our very survival.

Earth system process	Control variable	Planetary Boundary
Climate change	Atmospheric concentration of carbon dioxide	≤ 350ppm
	Change in radiative forcing	≤ 1W/m ²
Biodiversity loss	Global extinction rate	≤ 10E/MSY
Nitrogen and	Reactive nitrogen removed from the	
phosphorus cycles	atmosphere	≤ 62Tg
	Phosphorous flowing into oceans	≤ 11Tg
Stratospheric ozone	Stratospheric concentration of ozone	≤ 5% below
depletion	measured in Dobson Units (DU)	pre-industrial levels
		(290 DU)
Ocean acidification	Mean saturation state with respect to	≥80% of the
	aragonite in the oceans	pre-industrial level
Fresh water use	Freshwater consumption	≤4000 km³/yr
Change in land-use	Area of forested land as a percentage of	≥ 75%
	original forest cover	
Novel entities	NA	NA
Atmospheric aerosol	Aerosol optical depth	NA
loading		Regional limit of ≤ 0.25

Summary of the planetary boundaries. Credit: Adapted from Steffen et al. 2015, Author provided

The nine <u>planetary boundaries</u> are listed below; exceeding any of these limits puts us at risk of irreversible global damage. We are currently exceeding four, so it's fair to say the situation is urgent.

Despite providing important information about the health of our planet, the planetary boundaries fail to answer one very important question: what can we do about it?

The problem with the planetary boundaries is that they are limits for the environment, not for people. They cannot be easily related to human activities, nor do they make sense at smaller scales.

A national government would be hard-pressed to determine what a fair share of the world's <u>species extinctions</u> might be. A commuter deciding whether to take the bus or drive to work doesn't really know how her decision will affect the amount of carbon dioxide in the atmosphere. The planetary boundaries measure outcomes; they do not prescribe actions.

The Planetary Quotas are global budgets for environmental pressures that can be divided and managed at different levels and areas of society. Credit: Peter Newman/Kate Meyer, Author provided

The ecological footprint – which estimates how many Earths would be required for a given level of human activity – has long been used as a tool for environmental policy and action. But many experts think this measure is too simplistic. How can a single statistic possibly capture the range and complexity of human impacts on our planet?

Planetary accounting

This is where planetary accounting comes in. It offers a new approach to understanding the global impacts of any scale of human activity. It takes

the "safe operating space" defined by the planetary boundaries, and then uses these limits to derive a set of quotas that we can act on.

Using this approach, we have drawn up a set of ten global budgets for environmental factors, including <u>carbon dioxide</u> emissions, release of nitrogen to the environment, water consumption, reforestation, and so on.

Planetary	Control Variable and Global Limit	Description of Control Variable
Quota		
Carbon dioxide	Net CO₂ emissions ≤ -7.3 GtCO₂/yr	Net CO ₂ emissions including land use
		and land-use change emissions.
Me-NO	Me-NO emissions ≤5.4GtCO₂e/yr	Total warming potential of methane
		and nitrous oxide emissions expressed
		in terms of equivalent CO ₂ emissions
		(CO ₂ e).
Forestland	Reforestation ≥11Mha/yr	Net reforested land area.
Aerosols	0.04 ≤ AODe ≤ 0.1	Emissions of aerosols and precursor
		gases expressed in terms of equivalent
		aerosol optical depth (AODe)
Ozone	Montreal gas emissions ≈≤0	Emission of gases controlled or due to
	ODPkgs/yr	be controlled under the Montreal
		Protocol in terms of ozone depleting
		potential weighted kilograms (ODPkg)
Nitrogen	Net nitrogen released to the	Net reactive nitrogen released to the
	environment ≤62Tg/yr	environment.
Phosphorous	Net phosphorus released to the	Net phosphorus released to the
	environment ≤11Tg/yr	environment.
Water	Net water consumption ≤8500km³/yr	Net green, blue and grey water
		consumption
Biodiversity	Percentage disappearing fraction of	Net percentage disappearing fraction of
	species ≤ 1E-4/yr	species due to land occupation and
		transformation
Novel entities	Net imperishable waste ≤ 0kg	Imperishable waste released to the
		environment less imperishable waste
		removed from the environment.

The planetary quotas. Credit: Peter Newman/Kate Meyer, Author provided

These budgets can then be divided among the world's population in easily quantifiable units. That way, nations, cities, businesses and even individuals can begin to understand what their fair share actually looks like.

If the planetary boundaries are a health check for planet Earth, then you can think of these quotas as the prescription for a healthy global environment.

To extend the health analogy, it's rather like having a general checkup with a doctor, who might measure a range of variables such as your blood pressure, heart rate, weight and liver function. If any of these are outside the healthy range, the doctor might recommend a healthier diet, more exercise, or avoiding smoking or drinking too much.

Similarly, if we find we are exceeding our environmental fair share – say, by taking too much carbon-intensive transport, or eating too much nitrogen-intensive food – then we can begin to take action.

Amount Per Serving					
Calories 230	Cal	ories fron	n Fat 40		
		% Dail	y Value'		
Total Fat 8g			12%		
Saturated Fat 1g			5%		
Trans Fat 0g					
Cholesterol 0mg			0%		
Sodium 160mg			7%		
Total Carbohy	ydrate 37	g	12%		
Dietary Fiber 4g			16%		
Sugars 1g					
Protein 3g					
			7.2.2		
Vitamin A			10%		
Vitamin C			8%		
Calcium			20%		
Iron			45%		
* Percent Daily Value Your daily value may your calorie needs.					
Total Fat Sat Fat Cholesterol Sodium Total Carbohydrate	Less than Less than Less than Less than	2,000 65g 20g 300mg 2,400mg 300g	80g 25g 300mg 2,400mg 375g		

		% Daily Value
Carbon 8g	i CO ₂ e	12%
CO ₂ 4g		6%
CH ₄ 2.5g	3%	
N ₂ O 1.5		2%
Nitrogen	20%	
Aerosols	40%	
Water 20k	16%	
Phosphor	3%	
Landuse 0.2 ha		107%
Biodivers	ity Certifie	d YES
PB Chem	ical Certifie	ed NO
*Percent Daily V	alues are based on	an daily average of
	pita share for a 7.5 to a share listed below	oillion population.

Planetary Facts labels could be used to disclose the critical environmental impacts of goods and services. Credit: Peter Newman/Kate Meyer, Author provided

Planetary accounting is designed to work at a range of scales. We could use it to inform anything from individual actions, to city planning targets, to corporate sustainability goals, to global environmental negotiations.

It could even be "gamified," perhaps in the form of apps that let players compete with one another to live within their share of global environmental budgets. Or it could be used to draw up "planetary labels" similar to the nutritional information labels that help keep food companies honest and the public informed.

Planetary accounting won't solve all the complex problems our planet faces. But it could make it easier to answer that all-important question: "What can I do to help?"

This article is republished from <u>The Conversation</u> under a Creative Commons license. Read the <u>original article</u>.

Provided by The Conversation

Citation: Can your actions really save the planet? 'Planetary accounting' has the answer (2018, October 25) retrieved 26 April 2024 from https://phys.org/news/2018-10-actions-planetary-accounting.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.