Spray-coated tactile sensor on a 3-D surface for robotic skin

September 24, 2018, The Korea Advanced Institute of Science and Technology (KAIST)
Fabrication of e-skin using various printing methods and the detection of signals for wearable and robotic applications. Credit: KAIST

Robots will be able to conduct a wide variety of tasks as well as humans if they can be given tactile sensing capabilities.

A KAIST research team has reported a stretchable, -insensitive strain sensor by using a solution-based process. The process is easily scalable to accommodate large areas and can be coated as a thin film on three-dimensional, irregularly shaped objects via spray coating. These conditions make their processing technique unique and highly suitable for robotic electronic skin or applications.

The making of electronic skin to mimic the tactile sensing properties of human skin is an active area of research for applications such as wearable electronics, robotics and prosthetics. One of the major challenges in electronic skin research is differentiating external stimuli, particularly strain and pressure. Another issue is uniformly depositing electronic skin on three-dimensional, irregularly shaped objects.

To overcome these issues, the research team led by Professor Steve Park from the Department of Materials Science and Engineering and Professor Jung Kim from the Department of Mechanical Engineering developed electronic skin that can be uniformly coated on three-dimensional surfaces and distinguish . The new electronic skin can also distinguish mechanical stimuli analogously to human skin.

The structure of the electronic skin was designed to respond differently under applied pressure and strain. Under applied strain, conducting pathways undergo significant conformational changes, considerably changing the resistance. On the other hand, under applied pressure, negligible conformational change in the conducting pathway occurs; e-skin is therefore non-responsive to pressure. The research team is currently working on strain-insensitive pressure sensors to use with the developed strain sensors.

The research team also spatially mapped the local strain without the use of patterned electrode arrays utilizing electrical impedance tomography (EIT). By using EIT, it is possible to minimize the number of electrodes, increase durability, and enable facile fabrication onto three-dimensional surfaces.

Professor Park said, "Our electronic can be mass produced at a low cost and can easily be coated onto complex three-dimensional surfaces. It is a key technology that can bring us closer to the commercialization of for various applications in the near future."

Detecting mechanical stimuli using electrical impedance tomography. Credit: KAIST

Explore further: E-skin able to detect changes in wind, water drops and moving ants

More information: Jinwon Oh et al, Pressure Insensitive Strain Sensor with Facile Solution-Based Process for Tactile Sensing Applications, ACS Nano (2018). DOI: 10.1021/acsnano.8b03488

Related Stories

Recommended for you

Engineers produce smallest 3-D transistor yet

December 10, 2018

Researchers from MIT and the University of Colorado have fabricated a 3-D transistor that's less than half the size of today's smallest commercial models. To do so, they developed a novel microfabrication technique that modifies ...

New traffic rules in 'Graphene City'

December 6, 2018

In the drive to find new ways to extend electronics beyond the use of silicon, physicists are experimenting with other properties of electrons, beyond charge. In work published today (Dec 7) in the journal Science, a team ...

Artificial synapses made from nanowires

December 6, 2018

Scientists from Jülich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell. The component is able to save and ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.