Retracing Antarctica's glacial past

September 25, 2018, Louisiana State University
Researchers excavated and analyzed ancient fossilized organisms from the bottom of the ocean in Antarctica and discovered new information about an ice shelf that will inform future sea level rise predictions. Credit: Phil Bart, LSU

More than 26,000 years ago, sea level was much lower than it is today partly because the ice sheets that jut out from the continent of Antarctica were enormous and covered by grounded ice—ice that was fully attached to the seafloor. The ice sheets were as large as they could get and at the time, sea level was much lower because a lot of ice was sequestered on the continent. As the planet warmed, the ice sheets melted and contracted, and sea level began to rise. LSU Department of Geology & Geophysics Associate Professor Phil Bart and his students have discovered new information that illuminates how and when this global phenomenon occurred. Their research recently published in Nature's Scientific Reports may change today's sea level rise predictions as Earth and its icy continent continues to warm.

Bart and his students conducted one of the largest geological surveys of the Antarctic continental shelf to-date. His team of undergraduate and graduate students spent 28 days at sea aboard the U.S. Antarctic Programs' research ship, the Nathaniel B. Palmer RVIB, to scan the topography of the seafloor in the Ross Sea. They scanned and mapped a roughly 2,500-square-kilometer, or 965-square-mile, area to create a three-dimensional picture of the ocean floor. The scientists retraced the past movements of the West Antarctic Ice Sheet and its adjacent floating as global climate warmed. The ice shelf is a critical part of the climate system, because it slows down the breaking up and melting of grounded ice, which results in rise. The scientists confirmed that the West Antarctic Ice Sheet had begun contracting and a relatively small ice shelf existed by 14,000 years ago. The ancient Ross Sea Ice Shelf then collapsed and calved into the ocean about 12,300 years ago.

More recently in 2002, in the northern part of Antarctica called the Antarctic Peninsula, the Larsen Ice Shelf collapsed. The collapse of this ice shelf quickly led to inland glaciers buttressed by the Larsen Ice Shelf to break up and melt. Scientists have thought that a similar process could have occurred when the Ross Ice Shelf collapsed thousands of years ago in the West Antarctic Ice Sheet.

LSU Geology & Geophysics Professor Phil Bart led a team of scientists to 3D map the sea floor to find out how and when the West Antarctic Ice Sheet (outlined in white) moved and changed over the past 14,000 years. Credit: Phil Bart, LSU

However, Bart and colleagues from the University of South Florida, Auburn University and the Polish Academy of Sciences found that there was a centuries-long delay from when the Ross Ice Shelf collapsed and the grounded ice began to contract. In the Ross Sea, the delay was between 200 to 1,400 years later. This new information adds a layer of complexity for computer simulations and predictions.

The researchers made this discovery by combing through the imagery from their virtual map to find where sediment was being deposited while the ice was last in contact with the seafloor. At those locations, they collected sediment cores, which they analyzed and looked for evidence of fossilized life near the bottom of the ocean. In the sediment cores, they found fossilized shells of single cell organisms called foraminifera. These fossils provide a timestamped footprint that give the researchers an estimate of when the ice was last there through radiocarbon dating. The fossils retrieved from where the ice shelf collapsed are about 200 to 1,400 years older than the fossils found in the grounding line trough.

"We know that the West Antarctic Ice Sheet retreated more than 200 kilometers after the paleo-ice shelf collapsed. The radiocarbon dating of this past event is important because it shows that ongoing changes to ice shelves may trigger dynamics whose consequences are realized only after a significant delay," Bart said.

Explore further: New study puts a figure on sea-level rise following Antarctic ice shelves' collapse

More information: Philip J. Bart et al, A centuries-long delay between a paleo-ice-shelf collapse and grounding-line retreat in the Whales Deep Basin, eastern Ross Sea, Antarctica, Scientific Reports (2018). DOI: 10.1038/s41598-018-29911-8

Related Stories

Colossal Antarctic ice-shelf collapse followed last ice age

February 18, 2016

In a new study that provides clues about how Antarctica's nation-sized Ross Ice Shelf might respond to a warming climate, U.S. and Japanese oceanographers have shown that a 100,000-square-mile section of the ice shelf broke ...

Image: Antarctica's changing Larsen Ice Shelf

February 8, 2017

The Larsen Ice Shelf is situated along the northeastern coast of the Antarctic Peninsula, one of the fastest-warming places on the planet. In the past three decades, two large sections of the ice shelf (Larsen A and B) have ...

Recommended for you

Oceans of garbage prompt war on plastics

December 15, 2018

Faced with images of turtles smothered by plastic bags, beaches carpeted with garbage and islands of trash floating in the oceans, environmentalists say the world is waking up to the need to tackle plastic pollution at the ...

A damming trend

December 14, 2018

Hundreds of dams are being proposed for Mekong River basin in Southeast Asia. The negative social and environmental consequences—affecting everything from food security to the environment—greatly outweigh the positive ...

The long dry: global water supplies are shrinking

December 13, 2018

A global study has found a paradox: our water supplies are shrinking at the same time as climate change is generating more intense rain. And the culprit is the drying of soils, say researchers, pointing to a world where drought-like ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.